LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanopore Method Detects Single Influenza Virus at Single Particle Level

By LabMedica International staff writers
Posted on 03 Dec 2018
Print article
Image: An illustration showing detection of a single influenza virion using a solid-state nanopore (Photo courtesy of Osaka University).
Image: An illustration showing detection of a single influenza virion using a solid-state nanopore (Photo courtesy of Osaka University).
A team of Japanese researchers has introduced a novel sensor concept capable of discriminating various types of influenza virus in a label-free fashion by their distinct particle properties.

Rapid diagnosis of influenza infection before onset of symptoms would improve health care by reducing risk for serious complications as well as by preventing infectious disease outbreaks. Sensor sensitivity and selectivity are critical to accomplishing this goal, as the number of virus particles is quite small at the early stage of infection.

To overcome the low particle number problem, investigators at Osaka University (Japan) developed a nanopore device with electroosmotic flow (liquid motion induced by an electric current across the nanopore) properties that ensured that the pore channel would block the passage of non-virus particles. The nanopores were designed to have low thickness-to-diameter aspect-ratio structure so as to render additional sensitivity to the particle shape and surface charges. This provided resistive pulses holding a complex set of information concerning not only the nanoparticle volume but multiple physical properties of the intact viral particles.

To evaluate the information set, the investigators employed machine-learning-driven pattern-analysis of the electrical signatures. This allowed for rapid detection and simultaneous subtype differentiation of virus particles with an ultimate sensitivity of single-particle discriminations. Results demonstrated the ability to identify allotypes with 68% accuracy at the single-virus level.

"We used machine-learning analysis of the electrical signatures of the virions," said contributing author Dr. Makusu Tsutsui, associate professor of scientific and industrial research at Osaka University. "Using this artificial intelligence approach to signal analysis, our method can recognize a slight current waveform difference, which cannot be discerned by human eyes. This enables high-precision identification of viruses."

"Our testing revealed that this new sensor may be suitable for use in a viral test kit that is both quick and simple," said first author Akihide Arima, a researcher in the chemistry department at Osaka University. "Importantly, use of this sensor does not require specialized human expertise, so it can readily be applied as a point-of-care screening approach by a wide variety of healthcare personnel."

The nanopore technique for detecting influenza virus was described in the November 2, 2018, online edition of the journal Scientific Reports.

Related Links:
Osaka University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more