LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

RNA Analysis of Nasal Swabs Diagnoses Respiratory Virus Infection

By LabMedica International staff writers
Posted on 01 Jan 2018
Print article
Image: A scanning electron microscope (SEM) image of the respiratory virus Influenza A H7N9 (Photo courtesy of the CDC).
Image: A scanning electron microscope (SEM) image of the respiratory virus Influenza A H7N9 (Photo courtesy of the CDC).
A panel of three mRNAs has been shown to be able to predict presence of respiratory virus infection in nasal samples with an accuracy of 97%.

Despite the high burden of respiratory infection and the importance of early and accurate diagnosis, there is at this time no simple diagnostic test to rule in viral infection as a cause of respiratory symptoms.

To fill this gap, investigators at Yale University (New London, CT, USA) performed RNASeq on human nasal epithelial cells following stimulation of the intracellular viral recognition receptor RIG-I. Next, they evaluated whether measuring identified host mRNAs and proteins from patient nasopharyngeal swabs could predict the presence of a respiratory virus in the sample. Samples were obtained from patients who were primarily older adults or young children, reflecting the population tested for respiratory viruses in the healthcare system.

RNASeq (RNA sequencing) uses next-generation sequencing (NGS) to reveal the presence and quantity of RNA in a biological sample at a given moment in time. This technique is used to analyze the continuously changing cellular transcriptome. Specifically, RNASeq facilitates the ability to look at alternative gene spliced transcripts, post-transcriptional modifications, gene fusion, mutations/SNPs, and changes in gene expression over time, or differences in gene expression in different groups or treatments. In addition to mRNA transcripts, RNASeq can look at different populations of RNA to include total RNA, small RNA, such as miRNA, tRNA, and ribosomal profiling.

The investigators initially showed that a signature of three mRNAs, CXCL10, IFIT2, and OASL, predicted respiratory virus detection with an accuracy of 97% and identified proteins correlating with virus detection. In a follow-up study, elevated CXCL11 or CXCL10 protein levels identified samples containing respiratory viruses, including viruses not on the initial test panel.

"It is a simpler test and more cost-effective for looking at viral infection," said senior author Dr. Ellen Foxman, assistant professor of laboratory medicine at Yale University. "Instead of looking for individual viruses, our test asks the question: "Is the body fighting a virus?". We found we can answer that question very well. One reason to test is to know why the patient is sick. The other reason is to make a decision about whether people who are not that sick should get antibiotics."

The respiratory virus test was described in the December 21, 2017, online edition of The Journal of Infectious Diseases.

Related Links:
Yale University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more