We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Genetic Risk Factors Identified for Peanut Allergy

By LabMedica International staff writers
Posted on 25 Oct 2017
Print article
Image: Whole genome genotyping arrays are an important tool for discovering variants that contribute to human disease (Photo courtesy of Megan Smolenyak, MBA).
Image: Whole genome genotyping arrays are an important tool for discovering variants that contribute to human disease (Photo courtesy of Megan Smolenyak, MBA).
Peanut allergy develops in early life and is rarely outgrown. Roughly 1% of Canadian adults and between 2% and 3% of Canadian children are affected, and the symptoms can be severe and even life threatening.

A new gene associated with peanut allergy has been revealed, offering further evidence that genes play a role in the development of food allergies and opening the door to future studies, improved diagnostics and new treatment options.

An international team of scientists collaborating with those at the University of British Columbia (Vancouver, BC, Canada) scanned more than 7.5 million genetic locations in the DNA of 850 people with peanut allergy and nearly 1,000 people without it, through a genome-wide association study (GWAS), to search for markers that might be linked to food allergy. They recruited the peanut allergy participants from the Canadian Peanut Allergy Registry. The team also conducted a fresh analysis of results pooled from six other genetic studies of populations in North America, Australia, Germany, and the Netherlands. Genotyping of 1,974 individuals (987 cases, 987 controls) was conducted on the Illumina Omni 2.5M+Exome 8v1.1 chip.

The scientists reported that their study is the first to associate the EMSY, BRCA2 Interacting Transcriptional Repressor (EMSY) locus with food allergy, and these findings suggest that the gene plays an important role in the development of not just food allergy but also general allergic predisposition. The gene, called c11orf30/EMSY (EMSY), is already known to play a role in other allergy-related conditions, such as eczema, asthma, and allergic rhinitis. The team also found evidence that five other genetic locations might be involved.

Denise Daley, PhD, an associate professor and senior author of the study, said, “Food allergy is the result of both genetic and environmental factors, but there are surprisingly few data regarding the genetic basis of this condition. The discovery of this genetic link gives us a fuller picture of the causes of food allergies, and this could eventually help doctors identify children at risk.” The study was published on November 10, 2017, in the Journal of Allergy and Clinical Immunology.

Related Links:
University of British Columbia

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: A view of the brain with perturbation expression (Photo courtesy of Scripps Research)

Groundbreaking CRISPR Screen Technology Rapidly Determines Disease Mechanism from Tissues

Thanks to over a decade of advancements in human genetics, scientists have compiled extensive lists of genetic variations linked to a wide array of human diseases. However, understanding how a gene contributes... Read more