LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genetic Test Discovered for Predicting Cancer Recurrence

By LabMedica International staff writers
Posted on 04 Oct 2017
Print article
Image: Immunohistochemistry of estrogen-receptor-positive (ER (+)) breast cancer (Photo courtesy of Biocare Medical).
Image: Immunohistochemistry of estrogen-receptor-positive (ER (+)) breast cancer (Photo courtesy of Biocare Medical).
Treatment failure, due to drug resistance, still remains a major obstacle for more effective anti-cancer therapy and personalized medicine. In estrogen-receptor-positive (ER (+)) breast cancer, approximately 40% to 50% of patients eventually develop tamoxifen-resistance.

Mitochondrial genes can be routinely checked in biopsies of patients diagnosed with many different cancer types, including breast, lung, ovarian or gastric cancers and they prove more accurate than current methods of predicting a patient's response to treatment.

Collaborating scientists at the University of Salford (Greater Manchester, UK) and the University of Calabria (Cosenza, Italy) identified new measures by looking at the expression levels of mitochondrial genes in samples from post-treatment cancer patients. The team used multiple Kaplan-Meier curves to extrapolate how mitochondrial gene levels correlated with recurrence in hundreds of cancer patients. Certain genes predicted up to five times higher rates of recurrence or metastasis. One particularly useful biomarker, namely Heat Shock Protein Family D (Hsp60) Member 1(HSPD1), is associated with mitochondrial biogenesis, the process of making of new mitochondria.

The scientists combined four mitochondrial proteins to generate a compact mitochondrial gene signature, and this signature also successfully predicted distant metastasis and was effective in larger groups of 2,447 ER(+), 540 basal and 193 HER2(+)breast cancers. It was also effective in all 3,180 breast cancers, if considered together as a single group. The scientists noted that using mitochondria biomarkers would enable clinicians to predict with far greater accuracy, which patients will respond poorly to drug treatments, such as Tamoxifen, which is commonly administered to prevent disease progression in a sub-set of breast cancer patients.

Federica Sotgia, PhD, the lead investigator of the study, said, “In practical terms, a person in remission could be predicted to be 80% likely to fail treatment. If doctors can predict that a treatment will likely fail, it gives them more positive options; either they can monitor the patient more closely or offer an alternative course of treatment.” The study was published on July 27, 2017, in the journal Oncotarget.

Related Links:
University of Salford
University of Calabria

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more