We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cause of NMO Illuminated by High-Tech Microscope

By LabMedica International staff writers
Posted on 10 May 2017
Print article
Image: Researchers used a custom STED microscope to determine the cause of NMO, an uncommon disease syndrome of the central nervous system (CNS) that affects the optic nerves and spinal cord (Photo courtesy of Dr. William Pawluk).
Image: Researchers used a custom STED microscope to determine the cause of NMO, an uncommon disease syndrome of the central nervous system (CNS) that affects the optic nerves and spinal cord (Photo courtesy of Dr. William Pawluk).
Neuromyelitis optica (NMO), also known as Devic's disease or Devic's syndrome, is a heterogeneous condition consisting of the simultaneous inflammation and demyelination of the optic nerve (optic neuritis) and the spinal cord (myelitis) and it can be monophasic or recurrent.

Determining the spatial relationship of individual proteins in dense assemblies remains a challenge for super-resolution nanoscopy. A unique microscope capable of illuminating living cell structures in great detail has been used to find clues into how this destructive autoimmune disease works, setting the stage for more discoveries in the future.

Biophysicists at the University of Colorado Anschutz Medical Campus used a custom Stimulated Emission Depletion (STED) microscope built at CU Anschutz; they were able to actually see clusters of antibodies atop astrocytes, the brain cell target of the autoimmune response in NMO. They imaged secondary antibody labeling of monoclonal aquaporin-4- immunoglobulin G (AQP4-IgGs) with differing epitope specificity bound to isolated tetramers (M1-AQP4) and large orthogonal arrays of AQP4 (M23-AQP4).

Imaging secondary antibodies bound to M1-AQP4 allowed the team to infer the size of individual AQP4-IgG binding events. This information was used to model the assembly of larger AQP4-IgG complexes on M23-AQP4 arrays. A scoring algorithm was generated from these models to characterize the spatial arrangement of bound AQP4-IgG antibodies, yielding multiple epitope-specific patterns of bound antibodies on M23-AQP4 arrays.

The authors concluded that their results delineate an approach to infer spatial relationships within protein arrays using stimulated emission depletion nanoscopy, offering insight into how information on single antibody fluorescence events can be used to extract information from dense protein assemblies under a biologic context. Jeffrey Bennett, MD, PhD, a professor and senior author of the study, said, “We discovered that we could see the natural clustering of antibodies on the surface of target cells. This could potentially correspond with their ability to damage the cells. We know that once antibody binds to the surface of the astrocyte, we are witnessing the first steps in the disease process.” The study was published on April 25, 2017, issue of the Biophysical Journal.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The utilization of liquid biopsies in cancer research is a rapidly developing field (Photo courtesy of Lightspring/Shutterstock)

Blood Samples Enhance B-Cell Lymphoma Diagnostics and Prognosis

B-cell lymphoma is the predominant form of cancer affecting the lymphatic system, with about 30% of patients with aggressive forms of this disease experiencing relapse. Currently, the disease’s risk assessment... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Pathology

view channel
Image: The Sampler device could revolutionize sample collection for diagnostic tests (Photo courtesy of ReadyGo Diagnostics)

First of Its Kind Universal Tool to Revolutionize Sample Collection for Diagnostic Tests

The COVID pandemic has dramatically reshaped the perception of diagnostics. Post the pandemic, a groundbreaking device that combines sample collection and processing into a single, easy-to-use disposable... Read more