We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Method Developed Predicts Disease Activity in Multiple Sclerosis

By LabMedica International staff writers
Posted on 28 Sep 2016
Print article
Image: The C Scanner high-resolution microarray scanner (Photo courtesy of Agilent Technologies).
Image: The C Scanner high-resolution microarray scanner (Photo courtesy of Agilent Technologies).
Multiple sclerosis, or MS, is an inflammatory disease of the central nervous system that mainly affects young adults and it is not currently possible to know which individuals with multiple sclerosis, a life-long condition, risk developing severe disease.

Biomarkers are naturally occurring substances in the body that can be measured in, for example, blood and that mirror a condition in the body and they are used in medical care to follow the progression of a disease and measure the effect of a treatment.

Scientists at the Linköping University (Sweden) isolated CD4+ T cells were isolated from 16 women diagnosed with definite relapsing-remitting MS. None of the patients had experienced a relapse within three months prior to blood sampling nor had received immunomodulatory or immunosuppressive treatment for at least two months (one exception was intravenous immunoglobulin treatment given 15 days before treatment in one patient). 16 age-matched, healthy control women were recruited among blood donors. To validate the clinical classifying capacity at the protein level, plasma and cerebrospinal fluid (CSF) from a second cohort of 41 patients with early MS was used.

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood by density centrifugation (Lymphoprep, Axis-Shield, Oslo, Norway). The scientists used a variety of techniques including cell culture, flow cytometry staining and analysis, ribonucleic acid (RNA) extraction and microarray analysis, and these arrays were scanned on an Agilent Microarray Scanner (Agilent Technologies, Santa Clara, CA, USA). Cytokines and chemokines were also quantified.

The scientists tested whether in vitro activation of MS patient-derived CD4+ T cells could reveal potential biomarkers. The dynamic gene expression response to activation was dysregulated in patient-derived CD4+ T cells. By integrating their findings with genome-wide association studies, they constructed a highly connected MS gene module, disclosing cell activation and chemotaxis as central components. Changes in several module genes were associated with differences in protein levels, which were measurable in CSF and were used to classify patients from control individuals. In addition, these measurements could predict disease activity after two years and distinguish low and high responders to treatment in two additional, independent cohorts.

Mika Gustafsson, PhD, a bioinformatics specialist who co-led the study, said, “We have been able to study in detail changes in the immune cells of patients, and been able to identify important proteins. This has led us to a biomarker that can predict how the disease will progress in the patient.” The study was published on September 13, 2016, in the journal Cell Reports.

Related Links:
Linköping University
Axis-Shield
Agilent Technologies
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more