We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Cell-Free DNA Sequencing Confirms Myelodysplastic Syndrome Diagnosis

By LabMedica International staff writers
Posted on 25 Aug 2016
Print article
Image: The NucliSENS EasyMAG automated platform for total DNA extraction (Photo courtesy of BioMérieux).
Image: The NucliSENS EasyMAG automated platform for total DNA extraction (Photo courtesy of BioMérieux).
The use of next-generation sequencing (NGS) methods to analyze cell-free DNA (cf-DNA) in the blood of patients with myelodysplastic syndrome (MDS) yields more accurate results than the current standard approach of Sanger sequencing.

Myelodysplastic syndromes (MDSs) are a heterogeneous group of disorders, characterized by the presence of clonal neoplastic cells in bone marrow that lead to ineffective hematopoiesis and peripheral blood (PB) cytopenias. The major criteria for the diagnosis of MDS are the presence of peripheral cytopenia and dysplasia.

Scientists at the NeoGenomics Laboratories (Irvine, CA, USA) collected PB samples were collected from 16 patients confirmed to have MDS by bone marrow evaluation and from four age-matched normal controls. All patients had blasts of less than 5%. This included patients with refractory cytopenia with unilineage dysplasia, refractory cytopenia with multilineage dysplasia, and refractory anemia with ring sideroblasts (RARS). The team extracted cf-DNA from plasma and cellular DNA from PB cells.

Total nucleic acid was isolated from plasma using NucliSENS EasyMAG automated platform (BioMérieux, Marcy-l'Étoile, France). DNA was then quantified using Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). NGS and Sanger Sequencing were performed for several specific genes. Polymerase chain reaction products were purified and sequenced in both forward and reverse directions using an ABI PRISM 3730XL Genetic Analyzer (Applied Biosystems, Foster City, CA, USA).

Upon deep sequencing of the plasma cf-DNA, all 16 patients showed at least one mutated gene, confirming the presence of an abnormal clone consistent with MDS. No abnormality was detected in any of the four samples from normal control individuals. Eight patients (50%) showed mutation in one gene and the remaining eight patients (50%) showed mutations in two or more genes. Five of the 16 patients (31%) showed mutations detected by NGS of cf-DNA, while Sanger sequencing of PB cellular DNA showed no evidence of mutation.

Garth D. Ehrlich, PhD, FAAAS, Editor-in-Chief of the journal where the study was published, said, “This is a remarkable finding that cell-free DNA provides a more sensitive assay for detecting cancer than does the traditional approach of analyzing cell-associated DNA.” The study was published on July 14, 2016, in the journal Genetic Testing and Molecular Biomarkers.

Related Links:
NeoGenomics Laboratories
BioMérieux
Thermo Fisher Scientific
Applied Biosystems
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more