We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Tissue Typing Method Revolutionizes Field of Stem Cell Transplantation

By LabMedica International staff writers
Posted on 24 Jan 2016
Print article
Image: Single Molecule Real-Time (SMRT) DNA sequencing technology (Photo courtesy of Pacific Biosciences).
Image: Single Molecule Real-Time (SMRT) DNA sequencing technology (Photo courtesy of Pacific Biosciences).
Saliva and blood samples can be typed using a new system that allows scientists to obtain very high quality information about a patient and donor's tissue types, enabling them to make the best possible matches.

As well as improving outcomes, the technology should be faster than previous techniques, allowing the potential for more donors to be typed every year. Typing more donors would increase the chance of every patient finding a well matched donor—a vital move as currently only 60% of transplant patients receive the best possible match.

The technology, known as Third Generation Sequencing, also allows scientists working for the Anthony Nolan charity (London, UK) a further understanding of donor-patient compatibility in stem cell transplantation. The new highly accurate reads of the patient and donor's human leukocyte antigen (HLA) types will allow the investigators to identify currently unknown factors which contribute to the success or failure of a stem cell transplant. This information could prove to be invaluable for improving the success of future transplants.

The latest technology resolves this by generating exceptionally long DNA read lengths and by sequencing different tissues types in isolation. The Anthony Nolan scientists are working with new Single Molecule Real-Time (SMRT) DNA sequencing technology (Pacific Biosciences; Menlo Park, CA, USA). SMRT Sequencing is built upon two key innovations: zero-mode waveguides (ZMWs) and phospholinked nucleotides. ZMWs allow light to illuminate only the bottom of a well in which a DNA polymerase/template complex is immobilized. Phospholinked nucleotides allow observation of the immobilized complex as the DNA polymerase produces a completely natural DNA strand.

Katy Latham, PhD, Director of Laboratories at Anthony Nolan, said, “The implications of this technology could be enormous, allowing for accurate HLA typing in a single experiment and making redundant the need for multiple experiments and cross-referencing of results. This is significant as high resolution HLA typing has been shown to significantly improve outcomes when stem cells transplant recipients and their unrelated donors are matched very closely.”

Related Links:

Anthony Nolan 
Pacific Biosciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more