LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Connecting Molecular Dots of the Association Between Periodontitis and Heart Disease

By LabMedica International staff writers
Posted on 27 Sep 2015
Print article
Image: Confocal fluorosence microscopy of human aortic smooth muscle cells infected with the periodontal pathogen P. gingivalis (Photo courtesy of Zhang B et al., 2015, and the journal Infection and Immunity).
Image: Confocal fluorosence microscopy of human aortic smooth muscle cells infected with the periodontal pathogen P. gingivalis (Photo courtesy of Zhang B et al., 2015, and the journal Infection and Immunity).
Periodontitis is a risk factor for heart disease. Researchers have now shown that a periodontal pathogen causes changes in gene expression that boost inflammation and atherosclerosis in aortic smooth muscle cells.

The circumstantial evidence that led to this study was ample. The periodontal pathogen Porphyromonas gingivalis had also been found in coronary artery plaques of heart attack patients. And in two species of animal models, P. gingivalis was shown to cause and accelerate formation of coronary and aortic atherosclerosis. Investigators led by Torbjörn Bengtsson, School of Health Sciences, Örebro University (Örebro, Sweden), have now discovered how this happens.

They began by infecting cultured human aortic smooth muscle cells with P. gingivalis and found that gingipains (P. gingivalis virulence factors) boost expression of the pro-inflammatory angiopoietin 2, while dampening expression of the anti-inflammatory angiopoietin 1, with the net effect of increasing inflammation. “Although unstimulated [aortic smooth muscle cells] produce angiopoietin 2 at a low level, stimulation with wild-type P. gingivalis dramatically increases the gene expression of angiopoietin 2,” the investigators wrote.

“Angiopoietin 2 directly increases the migration of aortic smooth muscle cells,” said first author Boxi Zhang, PhD student, Prof. Bengtsson’s laboratory. “The migration of smooth muscle cells is involved in the pathogenesis of atherosclerosis.” As with ginginpains, tumor necrosis factor (TNF), the human-produced inflammatory cytokine and cardiovascular risk factor, also induces and promotes atherosclerosis via the two angiopoietins. However, their research showed that ginginpains operate independently from TNF.

“Our research clarifies the mechanism behind the association of periodontitis and cardiovascular disease,” said B. Zhang, “Our aim is to find biomarkers that can help us diagnose and treat both diseases.”

The study, by Zhang B et al., was published online ahead of print August 17, 2015, in the journal Infection and Immunity.

Related Links:

Örebro University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more