LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

BEAMing Technology Effectively Detects Cancer-Linked Mutations in Liquid Biopsy Samples

By LabMedica International staff writers
Posted on 19 Jul 2015
Print article
Image: The principle of blood-based DNA testing (Photo courtesy of Sysmex-Inostics).
Image: The principle of blood-based DNA testing (Photo courtesy of Sysmex-Inostics).
Liquid biopsy using BEAMing technology was found to be an effective method for analyzing tumor genotypes in real time and identifying significant mutations that occur during the course of disease and are not detected by tissue biopsy.

Rapid developments in the technology and protocols required for reliably isolating and analyzing circulating tumor DNA (ctDNA) in peripheral blood are making it easier to obtain the necessary samples without the need for physical biopsies. One such method, developed by Sysmex-Inostics (Kobe, Japan), utilizes digital PCR to detect somatic tumor mutations in ctDNA with high sensitivity. The technique combines emulsion digital PCR and flow cytometry. Known as BEAMing, it employs a combination of beads, emulsification, amplification, and magnetics to achieve the necessary level of sensitivity.

The BEAMing process starts with isolating and purifying the DNA present in blood plasma, which then goes through a pre-amplification step using conventional PCR to amplify the genetic section of interest using primers incorporating known tag sequences. These DNA templates are then amplified again via emulsion PCR, employing primers directed at these sequence tags and covalently bound to magnetic microbeads via streptavidin–biotin interactions. By designing the system this way, the PCR products generated in each emulsion droplet will remain physically affixed to the microbeads at the end of the reaction, allowing them to be easily separated and purified using a magnet. The method also provides a digital readout of copy number, as it has been experimentally optimized to ensure that each emulsion droplet will contain a maximum of one microbead and one DNA template molecule. This makes it possible to detect even very rare mutant templates at copy ratios greater than 1:10,000.

BEAMing technology was used to analyze the DNA in 503 blood samples acquired from patients with metastatic colorectal cancer participating in the CORRECT (previously treated metastatic colorectal cancer) phase III trial.

Results revealed that tumor-associated mutations could readily be detected by BEAMing of plasma DNA, with KRAS mutations identified in 69% of patients, PIK3CA mutations in 17% of patients, and BRAF mutations in 3% of patients. The results also showed that the drug regorafenib seemed to be consistently associated with a clinical benefit in a range of patient subgroups based on mutational status and protein biomarker concentrations.

Regorafenib (commercial name Stivarga) is an oral multi-kinase inhibitor, which targets angiogenic, stromal, and oncogenic receptor tyrosine kinase (RTK). Regorafenib shows antiangiogenic activity due to its dual targeted VEGFR2-TIE2 (vascular endothelial growth factor receptor 2 - tyrosine kinase with immunoglobulin-like and EGF-like domains 2) tyrosine kinase inhibition. Regorafenib has been shown to increase the overall survival of patients with metastatic colorectal cancer and is currently being studied as a potential treatment option in multiple tumor types.

"This is the first large clinical trial to compare liquid versus conventional tissue biopsy data, and the results show the former (BEAMing technology) obtain more data on tumor mutation throughout the course of the disease, enabling us to better target therapy to the specificities of patient's tumor; this could have a considerable impact on clinical practice, as novel applications of this technology could be further investigated and developed," said first author Dr. Josep Tabernero, head of the medical oncology department at the Vall d'Hebron Institute of Oncology (Barcelona, Spain).

The CORRECT BEAMing study was published in the July 13, 2015, online edition of the journal the Lancet Oncology.

Related Links:

Sysmex-Inostics
Vall d'Hebron Institute of Oncology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more