LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Molecular Urine Test Identifies Lung Carcinoma Mutations

By LabMedica International staff writers
Posted on 20 May 2015
Print article
Droplet digital polymerase chain reaction system
Droplet digital polymerase chain reaction system (Photo courtesy of BIO-RAD LABORATORIES)
The monitoring of circulating tumor DNA (ctDNA) is a promising technique that may provide clinicians with a faster, cheaper and less invasive way to evaluate the clinical status and response to therapy of cancer patients.

Disease progression in patients with metastatic non-small-cell lung cancer (NSCLC) is often heralded by the acquisition of epidermal growth factor receptor (EGFR) T790M resistance mutation following treatment with anti-EGFR inhibitors.

Scientists at Moores Cancer Center (La Jolla, CA, USA) took urine samples from patients with metastatic NSCLC who progressed on erlotinib treatment and ctDNA was extracted by a method that preferentially isolates short, fragmented ctDNA. Droplet digital polymerase chain reaction system (Bio-Rad; Hercules, CA, USA) was used to quantify the ctDNA and yielded an average of total amplifiable ctDNA per sample of 0.4 µg (range, 0.04 µg to 2.4 µg). Spiked cell lines were used for analytical characterization and demonstrated that the EGFR T790M assay had a lower limit of detection of two copies within a background of 60 ng of wild-type DNA, yielding an analytical sensitivity of 0.01%. EGFR status was analyzed using a PCR method that amplifies short target DNA fragments using kinetically-favorable binding conditions for a wild type blocking oligonucleotide, followed by massively parallel deep sequencing using a MiSeq desktop sequencer (Illumina; San Diego CA, USA).

EGFR T790M mutation in urine was detected in 15 of 22 (68%) of patients receiving anti-EGFR treatment until progression. Urine EGFR T790M mutation was detected in 10 out of 10 tissue-positive patients, giving 100% concordance. Urine ctDNA testing identified five additional patients who may be eligible for treatment with anti-T790M drugs, three of whom were tissue negative. The investigators showed that EGFR T790M mutation can be detected in urinary ctDNA up to three months before radiographic progression on first-line anti-EGFR tyrosine kinase inhibitor (TKI). When T790M positive patients were treated with third generation anti-EGFR TKIs, a decrease in ctDNA T790M load was observed as early as four hours after therapy on first day of treatment. The initial decrease in urinary T790M was followed by a spike in T790M during the first week of therapy.

Hatim Husain, MD, the lead author of the study and his colleagues concluded that this ctDNA assay for multiple genes via next-generation sequencing (NGS) might become a "liquid biopsy" that could serve as an alternative to invasive tissue biopsy. EGFR T790M mutation in urine was detected months before radiographic detection, and furthermore, urine ctDNA testing identified tissue negative patients who may be eligible for treatment with third generation anti-EGFR TKIs and monitoring of urinary T790M dynamics may predict clinical benefit or initial tumour burden. The study was presented at the EUROPEAN Lung Cancer Conference held April 15–18, 2015, in Geneva (Switzerland).

Related Links:

Moores Cancer Center
Bio-Rad
Illumina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more