LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Technique Paints Tissue Samples with Light

By LabMedica International staff writers
Posted on 15 Apr 2015
Print article
Image: Breast tissue computationally stained using data from infrared imaging without actually staining the tissue, enabling multiple stains on the same sample. From left, the image shows a Hematoxylin and Eosin stain (pink-blue), molecular staining for epithelial cells (brown color) and Masson\'s trichrome (blue, red at right) (Photo courtesy of Prof. Rohit Bhargava).
Image: Breast tissue computationally stained using data from infrared imaging without actually staining the tissue, enabling multiple stains on the same sample. From left, the image shows a Hematoxylin and Eosin stain (pink-blue), molecular staining for epithelial cells (brown color) and Masson\'s trichrome (blue, red at right) (Photo courtesy of Prof. Rohit Bhargava).
One infrared scan can give pathologists a window into the structures and molecules inside tissues and cells, enabling fast and broad diagnostic assessments, due to a newly developed imaging technique.

Doctors and scientist use stains or dyes that stick to the particular structure or molecule they are looking for when studying tissue samples. Staining can be a long and exacting process, and the added chemicals can damage cells. Histologists also have to choose which things to test for, because it is not always possible to obtain multiple samples for multiple stains from one biopsy. Dyes such as hematoxylin and eosin (H&E) and immunohistochemical stains have been increasingly used to visualize tissue composition in clinical practice.

Scientists at the University of Illinois Cancer Center (Urbana, IL, USA) and their colleagues have developed a technique using a combination of advanced microscope imaging and computer analysis. The new, advanced infrared imaging technique uses no chemical stains, instead scanning the sample with infrared light to directly measure the chemical composition of the cells. The computer then translates spectral information from the microscope into chemical stain patterns, without the bother of applying dyes to the cells.

The Fourier transform infrared (FT-IR) spectroscopic imaging and computation and stainless computed histopathology can enable a rapid, digital, quantitative and non-perturbing visualization of morphology and multiple molecular epitopes simultaneously in a variety of clinical pathology applications. The investigators reproduced a wide array of molecular stains by computationally isolating the spectra of specific molecules. This allows the user to simply tune to a required stain, for as many different stains as are necessary, all without damaging the original tissue sample, which can then be used for other tests.

David Mayerich, PhD, the lead author of the study, said, “We are relying on the chemistry to generate the ground truth and act as the 'supervisor' for a supervised learning algorithm. One of the bottlenecks in automated pathology is the extensive processing that must be applied to stained images to correct for staining artifacts and inconsistencies. The ability to apply stains uniformly across multiple samples could make these initial image processing steps significantly easier and more robust.” The study was published on March 20, 2015, in the journal Technology.

Related Links:

University of Illinois Cancer Center 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more