LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Identified That Drives Aggressive Form of Breast Cancer

By LabMedica International staff writers
Posted on 12 Apr 2015
Print article
Image: Inhibitor of differentiation 4 positive (ID4+) stem cells are in red, luminal cells in green, and all cells are marked with blue nuclear dye (Photo courtesy of Garvan Institute of Medical Research).
Image: Inhibitor of differentiation 4 positive (ID4+) stem cells are in red, luminal cells in green, and all cells are marked with blue nuclear dye (Photo courtesy of Garvan Institute of Medical Research).
A gene has been identified that drives one of the most aggressive forms of breast cancer, giving hope that by finding a way to block the gene they may be able to make the cancer less aggressive.

The triple-negative breast cancers are two distinct diseases that likely originate from different cell types and this helps explain why survival prospects for women with the diagnosis tend to be either very good or very bad.

A large multidisciplinary team of scientist led by those at the Garvan Institute of Medical Research (Sydney, Australia) found that the gene known as inhibitor of differentiation 4 (ID4) not only indicates a highly aggressive form of triple-negative breast cancer but also appears to control it. Triple negative breast cancers are breast cancers that lack estrogen, progesterone and the human epidermal growth factor receptors (HER2). Breast cancers that have these receptors can be targeted by drugs.

While the more benign form of triple-negative breast cancer appears to originate from specialized cells, the team found that the aggressive form of the disease seems to originate from stem cells. When ID4 is blocked in a stem cell, other genes that drive cell specialization are activated. In addition, the estrogen receptor and a number of other genes expressed by forms of breast cancer with better prognoses are also activated. Furthermore, ID4 is specifically expressed by a subset of human basal-like breast cancers (BLBC) that possess a very poor prognosis and a transcriptional signature similar to a mammary stem cell.

Alexander Swarbrick, PhD, the corresponding author of the study, said, “Estrogen receptor-positive breast cancers have a relatively good prognosis because the drug tamoxifen is very effective at blocking the estrogen receptor and hence their growth. We speculate, therefore, that by blocking ID4 it might be possible to turn stem-cell-like breast cancers into less aggressive breast cancers that may even respond to tamoxifen. If we are correct, that would be remarkable.” The study was published on March 27, 2015, in the journal Nature Communications.

Related Links:

Garvan Institute of Medical Research 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more