LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Healthy-Looking Prostate Cells Mask Cancer-Causing Mutations

By LabMedica International staff writers
Posted on 18 Mar 2015
Print article
Image: The MiSeq desktop sequencer (Photo courtesy of Konrad Förstner).
Image: The MiSeq desktop sequencer (Photo courtesy of Konrad Förstner).
Genome-wide DNA sequencing has been used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of individuals.

Prostate cancer is often made up of many small tumors with different genetic fingerprints, and it is still unclear what causes these different tumors to develop in the prostate at the same time, but new studies provides a piece of the puzzle that could help solve the mystery.

A large team of scientists led by the Institute of Cancer Research (London, UK) collected samples for analysis from prostatectomy patients. Prostates were sliced and processed and a single 5-mm slice of the prostate was selected for analysis purposes, and 4-mm or 6-mm cores were taken from the slice and frozen. Frozen cores were mounted vertically and sectioned transversely to create one 5-μm frozen section for staining and six 50-μm sections for DNA preparation.

The V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog (ERG) fluorescence in situ hybridization (FISH) break-apart assay for assessing ERG gene rearrangement was performed. DNA was extracted from 18 samples from three subjects: 12 prostate cancer samples; three adjacent, morphologically normal prostate samples; and three matched bloods. Paired-end genome-wide sequencing (GWS) of the samples was also performed. Targeted polymerase chain reaction (PCR) and sequencing of selected mutations and structural variants were analyzed for each sample using a MiSeq sequencer (Illumina, Inc.; San Diego, CA, USA).

The results suggest that large numbers of normal-looking prostate cells have a variety of genetic faults and cancer could develop from any of them. This could explain why prostate cancer is often made up from multiple genetically different tumors and suggests that prostate cancer development begins earlier than scientists thought. The findings may lead to a rethink of prostate cancer treatment, in which these precancerous cells are destroyed at the same time as the tumor cells.

Rosalind Eeles, FMedSci, MA, FCRP, FRCR, PhD, a professor of Oncogenetics and senior author of the study said, “When we examine the cells that lie close to prostate cancer under the microscope, we look at their shape, size and relationship to surrounding cells. If everything appears normal then we may assume that we're looking at healthy tissue. But thanks to genetic sequencing we've shown that some of these normal-looking cells are already carrying genetic mistakes that are linked to the cancer nearby. This study helps us understand more about the beginnings of prostate cancer, so we can tackle the disease at its roots.” The study was published on March 2, 2015, in the journal Nature Genetics.

Related Links:
The Institute of Cancer Research 
Illumina, Inc.


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more