LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

MicroRNA Panel Distinguishes Between High- and Low-Risk Pancreatic Lesions

By LabMedica International staff writers
Posted on 15 Feb 2015
Print article
Image: Intraductal papillary mucinous neoplasm (IPMN) in magnetic resonance imaging (Photo courtesy of Wikimedia Commons).
Image: Intraductal papillary mucinous neoplasm (IPMN) in magnetic resonance imaging (Photo courtesy of Wikimedia Commons).
A panel of six microRNAs (miRNAs) has been identified that can distinguish between high-risk and low-risk pancreatic lesions that are capable of progressing to full-blown cancer of the pancreas.

Intraductal papillary mucinous neoplasms (IPMNs) are precursors of the form of cancer of the pancreas called pancreatic ductal adenocarcinoma (PDAC). Differentiating between high-risk IPMNs that warrant surgical resection and low-risk IPMNs that can be monitored has been a significant clinical problem.

Pancreatic cancer is the fourth most common cause of cancer death in the Western world. The prognosis is poor, with one- and five-year survival rates of only 20% and 6%, respectively. To aid in early detection of pancreatic cancer, investigators at the Moffitt Cancer Center (Tampa, FL, USA) used advanced genomic tools to analyze the miRNAs associated with low-risk and high-risk IPMNs.

MiRNAs comprise a family of small noncoding 19- to 25-nucleotide RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation, depending on the degree of complementarity between miRNAs and their targets. Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. In fact, miRNAs have been shown to be involved in the regulation of gene expression during development, cell proliferation, apoptosis, glucose metabolism, stress resistance, and cancer.

The investigators performed genome-wide miRNA expression profiling on 28 surgically-resected, pathologically-confirmed IPMNs (19 high-risk, nine low-risk) using Life Technologies (Carlsbad, CA, USA) Taqman MicroRNA Arrays. A validation phase was performed in 21 independent IPMNs (13 high-risk, 8 low-risk). They also explored associations between miRNA expression level and various clinical and pathological factors and examined genes and pathways regulated by the identified miRNAs by integrating data from bioinformatic analyses and microarray analysis of miRNA gene targets.

Results revealed that six miRNAs (miR-100, miR-99b, miR-99a, miR-342-3p, miR-126, miR-130a) were downregulated in high-risk versus low-risk IPMNs and distinguished between these groups. The same trend was observed in the validation phase of the study. Low miR-99b expression was associated with main pancreatic duct involvement, and serum albumin levels were positively correlated with miR-99a and miR-100 expression.

“Importantly, this research may also help foster the development of new prevention and early detection strategies for pancreatic cancer,” said senior author Dr. Mokenge P. Malafa, chairman of the department of gastrointestinal oncology at the Moffitt Cancer Center. “We also provided evidence that the six microRNAs may contribute to pancreatic cancer progression.”

Related Links:

Moffitt Cancer Center
Life Technologies


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more