LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genome Analysis Study to Aid Diagnosis of Rare Developmental Disorders

By LabMedica International staff writers
Posted on 06 Jan 2015
Print article
First results from a study that will eventually incorporate complete genome analysis of 12,000 families in the United Kingdom and the Republic of Ireland have revealed 12 novel genes associated with rare and difficult to diagnose developmental disorders.

The Deciphering Developmental Disorders (DDD) study, which is underwritten primarily by the Wellcome Trust Sanger Institute (Hinxton, United Kingdom) was designed to capitalize on the latest genetic techniques in order to help doctors understand the basis for developmental disorders. The program has brought together clinicians in the 24 Regional Genetics Services throughout the United Kingdom and researchers at the Wellcome Trust Sanger Institute, which played a leading role in sequencing the human genome. The DDD study involves experts in clinical, molecular, and statistical genetics as well as in ethics and social science.

The first paper to be published under the auspices of the DDD program reported results from a study of 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements. The investigators reported discovering 12 novel genes associated with developmental disorders. These newly implicated genes increased by 10% (from 28% to 31%) the proportion of children that could be diagnosed. All of the newly diagnosed developmental disorders were caused by de novo mutations, which were present in the child but not in their parents' genomes.

DDD's nationwide secure data-sharing network made it possible to find and compare these rare disorders. For example, for four of the 12 newly identified genes, identical mutations were found in two or more unrelated children living hundreds of miles apart. In another example, two unrelated children, both with identical mutations in the PCGF2 (Polycomb group RING finger protein 2) gene, which is involved in regulating genes important in embryo development, were found to have strikingly similar symptoms and facial features. This discovery enabled the certification of a new, distinct dysmorphic syndrome.

"The DDD study has shown how combining genetic sequencing with more traditional strategies for studying patients with very similar symptoms can enable large-scale gene discovery," said contributing author Dr. John Burn, professor of clinical genetics at Newcastle University (United Kingdom). "This data-set becomes more effective with each diagnosis and each newly identified gene."

The study was published in the December 24, 2014, online edition of the journal Nature.

Related Links:

Wellcome Trust Sanger Institute
Newcastle University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more