LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Next-Generation DNA Sequencing Refines Pneumonia Diagnosis

By LabMedica International staff writers
Posted on 07 Oct 2014
Print article
Applying advanced next-generation sequencing (NGS) of DNA from samples taken from intubated patients with suspected pneumonia has the potential for providing physicians with rapid, precise, culture-independent identification of bacterial, fungal, and viral pathogens and their antimicrobial sensitivity profiles.

Accurate and rapid identification of the microbial pathogens in patients with pulmonary infections could lead to targeted antimicrobial therapy with potentially less adverse effects and lower costs. Toward this end, investigators at George Washington University (Washington DC, USA) combined an NGS approach with data interpretation based on the "PathoScope" bioinformatics software package to analyze bronchial aspirates from 61 intubated patients with suspected pneumonia.

Pathoscope capitalizes on a Bayesian statistical framework that accommodates information on sequence and mapping quality and provides probabilities of matches to a known database of reference genomes. This approach incorporates the possibility that multiple species can be present in the sample or that the target strain is not even contained within the reference database. It also accurately discriminates between very closely related strains of the same species with much less than one time coverage of the genome and without the need for sequence assembly or complex preprocessing of the database or taxonomy. No other method so far described in the literature has been shown to identify species or substrains in such a direct and automatic manner and without the need for large numbers of reads.

The present study used NGS of essentially full-length PCR-amplified 16S ribosomal DNA from the bronchial aspirates. The results from the 61 patients demonstrated that sufficient DNA could be obtained from 72% of samples, 44% of which (27 samples) yielded PCR amplimers suitable for NGS. Out of 27 sequenced samples, only 20 had bacterial culture growth, while microbiological and NGS identification of bacteria coincided in 17 (85%) of these samples. Despite the lack of bacterial growth in seven samples that yielded amplimers and were sequenced, the NGS identified a number of bacterial species in these samples.

Overall, a significant diversity of bacterial species was identified from the same genus as the predominant cultured pathogens. The number of NGS-identifiable bacterial genera was consistently higher than identified by standard microbiological methods.

“Currently, patients who develop pneumonia after entering the ICU are subjected to broad-spectrum antibiotics, which adds costs, potentially increases the risk of development of antimicrobial resistance, and creates a greater likelihood of an adverse effect attributable to the antibiotics,” said senior author Dr. Gary Simon, professor of medicine at George Washington University. “In our paper, we show these methods could improve if we establish a more precise microbiologic cause.”

The study was published in the August 20, 2014, online edition of the Journal of Clinical Microbiology.

Related Links:

George Washington University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more