We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Aqueous Two-Phase Systems Enable Homogeneous Immunoassay Multiplexing

By LabMedica International staff writers
Posted on 28 Jul 2014
Print article
Image: Multiphase polymer systems confine unique antibody-conjugated beads that bind with high sensitivity and specificity to plasma protein biomarkers, eliciting amplified luminescent signals. The signal intensity from the beads is proportional to the levels of disease biomarkers in the blood plasma (Photo courtesy of World Scientific).
Image: Multiphase polymer systems confine unique antibody-conjugated beads that bind with high sensitivity and specificity to plasma protein biomarkers, eliciting amplified luminescent signals. The signal intensity from the beads is proportional to the levels of disease biomarkers in the blood plasma (Photo courtesy of World Scientific).
A novel test simplifies disease detection by enabling simultaneous detection of multiple proteins in blood plasma in only two hours.

The test can accurately and simultaneously measure multiple biomarker proteins that indicate the presence of diseases like graft-versus-host disease as happens in bone marrow transplant rejection and needs no washing steps, and uses only a minute volume of blood plasma.

Scientists at the University of Michigan (Ann Arbor, MI, USA) developed the protein test, which uses a micropatterning method. To perform the assay, a few microliters of blood plasma is mixed with poly(ethylene glycol) and added to a microwell in a custom 384-well microplate. Next, microdroplets of dextran, containing complimentary pairs of antibody-beads, are dispensed into microbasins within the sample well. During two-hour incubation, target plasma protein biomarkers diffuse from the poly(ethylene glycol) phase to the dextran droplets and become sandwiched by the antibody beads. The microplate is then read on a commercially available plate reader.

The cross-reaction-free, multiplex assay can simultaneously detect picomolar concentrations of four protein biomarkers: C-X-C motif ligand 10 (CXCL10), CXCL9, interleukin (IL)-8 and IL-6 in cell supernatants using a single assay well. The potential clinical utility of the assay was demonstrated by detecting diagnostic biomarkers (CXCL10 and CXCL9) in plasma from 88 patients at the onset of the clinical symptoms of chronic graft-versus-host disease (GVHD).

Shuichi Takayama, PhD, a professor and a senior author of the study, said, “Just as oil and water remain immiscible, we use two aqueous solutions that do not mix with each other. Interestingly, these solutions can be patterned into arrays, whereas standard no-wash protein test reagents normally just mix together in solution. This novel capability makes it possible, for the first time, to measure multiple diagnostic proteins at a time in a no-wash format test.”

Arlyne Simon, PhD, the lead author of the study, said, “We envision that our user-friendly and highly accurate platform will be widely used by academic and clinical scientists for diagnostics as well as other applications. To ease the adoption of our technology into research and clinical labs, we designed custom microplates that can be analyzed by commercially available plate readers.” The study was published on June 2, 2014, in the journal TECHNOLOGY.

Related Links:

University of Michigan


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: ColoSense is the first FDA-approved RNA-based molecular screening test for qualitative detection of colorectal cancer (Photo courtesy of Geneoscopy)

RNA-Powered Molecular Test to Help Combat Early-Age Onset Colorectal Cancer

Colorectal cancer (CRC) ranks as the second most lethal cancer in the United States. Nevertheless, many Americans eligible for screening do not undergo testing due to limited access or reluctance towards... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more