We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Thyroid Lesions Examined by Scanning Acoustic Microscope

By LabMedica International staff writers
Posted on 05 Mar 2014
Print article
Image: The scanning acoustic microscope AMS-50SI system (Photo courtesy of Honda Electronics Co, Ltd).
Image: The scanning acoustic microscope AMS-50SI system (Photo courtesy of Honda Electronics Co, Ltd).
A scanning acoustic microscope (SAM) uses ultrasound to image an object by plotting the speed-of-sound (SOS) through tissues on screen, and because hard tissues result in great SOS, SAM can provide data on the tissue elasticity.

Scanning acoustic microscopy uses ultrasound at 120 MHz with almost the same resolution of approximately 12.5 μm as the low magnification of a light microscope (LM), and it had been found useful in generating useful information on the lung, stomach, and lymph node lesions.

Scientists at Hamamatsu University School of Medicine (Japan) selected and examined formalin-fixed, paraffin-embedded blocks that were flat-sectioned in 10 μm thick sections from patients with inflammatory non-neoplastic and neoplastic thyroid lesions. Specimens were randomly selected from the computer database of pathological sections and typical lesions of thyroid diseases were identified based on hematoxylin and eosin sections.

The formalin-fixed, paraffin sections were scanned with a 120 MHz transducer using the SAM model AMS-50AI (Honda Electronics Co, Ltd; Toyohashi, Japan). SOS through each area was calculated and plotted on the screen to provide histological images, and SOS of each lesion was compared and statistically analyzed.

High-concentrated colloids, red blood cells, and collagen fibers showed pronounced SOS while low-concentrated colloids, parathyroids, lymph follicles, and epithelial tissues including carcinomas demonstrated lower SOS. SAM clearly discriminated structure of thyroid components corresponding to low magnification of light microscopy. Thyroid tumors were classified into three groups by average SOS: the fast group consisted of follicular adenomas/carcinomas and malignant lymphomas; the slow group contained poorly differentiated/undifferentiated carcinomas; and the intermediate group comprised papillary/medullary carcinomas.

The authors concluded that SAM imaging has the following benefits: precise images were acquired in a few minutes without special staining; structural irregularity and desmoplastic reactions, which indicated malignancy, were detected; images reflected tissue elasticity, which was statistically comparable among lesions by SOS; and tumor classification was predictable by SOS because more poorly differentiated carcinomas had a tendency to show lower SOS. The study was published on February 11, 2014, in the journal Pathology and Laboratory Medicine International.

Related Links:

Hamamatsu University School of Medicine 
Honda Electronics Co, Ltd 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more