We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genomic Assay Predicts Probability of Heart Transplant Rejection

By LabMedica International staff writers
Posted on 05 Mar 2014
Print article
Results obtained over time by a gene expression assay used to monitor heart transplant patients for signs of rejection may be able to predict the likelihood of rejection in the future.

The AlloMap Molecular Expression Test, which is manufactured and performed by the biomedical company XDx (Brisbane, CA, USA), is an in vitro diagnostic multivariate index assay (IVDMIA) testing service. The assay, which is performed in a single laboratory, assesses the gene expression profile of RNA isolated from peripheral blood mononuclear cells (PBMC). AlloMap Testing may be used to evaluate transplant patients aged 15 years or older from at least two months after the transplant. It is intended to aid in the identification of heart transplant recipients with stable allograft function who have a low probability of moderate/severe acute cellular rejection at the time of testing in conjunction with standard clinical assessment.

AlloMap, which measures the expression levels of 11 rejection-related genes from a patient's blood sample, received clearance from the [US] Food and Drug Administration (FDA) in 2008 and it is now routinely used by a majority of American heart transplant centers to monitor low-risk patients during follow-up care, resulting in a substantial reduction in the number of heart-muscle biopsies.

Investigators at the University of California, Los Angeles (USA) recently evaluated data obtained by a study of 600 heart transplant recipients who had been monitored by routine biopsy or with the AlloMap test. They found that the variability of a heart recipient's gene expression profiling test scores over time could provide prognostic utility. This information was independent of the probability of acute cellular rejection at the time of testing.

"The AlloMap was the first FDA-cleared test allowing transplant centers to rule out rejection at the time of the visit," said first author Dr. Mario Deng, professor of medicine at the University of California, Los Angeles. "But until now, it has never been used to predict future events. For the first time, we can use genomic testing over multiple patient visits to go beyond intuition to understand not just how patients are doing now but how they are likely to be a few months from now. It is another step toward personalized medicine."

The study was published in the January 31, 2014, online edition of the journal Transplantation.

Related Links:

XDx 
University of California, Los Angeles 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more