We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Ground-Breaking New Method for Multi-Cancer Early Detection Is More Practical and Cheaper

By LabMedica International staff writers
Posted on 08 Dec 2022
Image: The multi-cancer early detection method measures cancer-indicating changes in so-called glycosaminoglycans (Photo courtesy of Chalmers)
Image: The multi-cancer early detection method measures cancer-indicating changes in so-called glycosaminoglycans (Photo courtesy of Chalmers)

Cancer is one of the deadliest diseases in the world and is more difficult to cure when detected at a late stage. When cancer is detected at an early stage, the rates of survival increase drastically, but today only a few cancer types are screened for. Finding effective methods for early detection of several types of cancer at the same time, so-called Multi-Cancer Early Detection (MCED), is an emerging research area. Today's established screening tests are cancer type-specific, which means that patients need to be tested for each cancer type separately. Emerging MCED tests under development are usually based on genetics, for example measuring DNA fragments from tumors circulating in the blood. But DNA-based methods can only detect some types of cancer and have limited ability to find tumors at the earliest stage, so called stage I.

Now, in an international collaboration, researchers from Chalmers University of Technology (Gothenburg, Sweden) have developed a new method for MCED that is instead based on human metabolism. The results uncover new opportunities for cheaper and more effective cancer screening. In a study totaling 1,260 participants, the researchers first discovered that the new method could detect all 14 cancer types that were tested. Next, they showed that twice as many stage I cancers in asymptomatic healthy people can be detected with the new method compared to the emerging DNA-based MCED tests.

The method is based on a discovery at Chalmers almost 10 years ago: that so-called glycosaminoglycans – a type of sugar that is an important part of our metabolism – are excellent biomarkers to detect cancer noninvasively. The researchers developed a machine learning method in which algorithms are used to find cancer-indicating changes in the glycosaminoglycans. The method uses comparatively small volumes of blood or urine, which makes them more practical and cheaper to use. In the next step, the researchers hope to be able to conduct a study with even more participants to further develop and confirm the method’s potential for screening use.

"This is a previously unexplored method, and thanks to the fact that we have been able to test it in a large population, we can show that it is effective in finding more stage I cancers and more cancer types. The method makes it possible to find cancer types that are not screened for today and cannot be found with DNA-based MCED tests, such as brain tumors and kidney cancer," said Francesco Gatto, a visiting researcher at the Department of Biology and Biological Engineering at Chalmers and one of the study's authors. "The fact that the method is comparatively simple means that the cost will be significantly low, ultimately enabling more people to have access to and take the test."

Related Links:
Chalmers University of Technology

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: EBP and EBP plus have received FDA 510(k) clearance and CE-IVDR Certification for use on the BD COR system (Photo courtesy of BD)

High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample

Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
GLOBE SCIENTIFIC, LLC