LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New CRISPR-Based Assay Detects Biomarker of Kidney Transplant Rejection in Urine

By LabMedica International staff writers
Posted on 19 Jan 2022
Illustration
Illustration

Researchers have developed a CRISPR-based assay that can sensitively and non-invasively detect a biomarker of acute kidney rejection in urine.

The assay developed by researchers at the Rensselaer Polytechnic Institute (Troy, NY, USA) could someday help diagnose rejection earlier and without a biopsy. Kidney transplant recipients must take immunosuppressant drugs for the rest of their lives to help keep their immune systems from attacking the foreign organ. However, kidney rejection can still occur, particularly in the first few months after transplantation, which is known as acute rejection. Signs include increased serum creatinine levels and symptoms such as kidney pain and fever.

Currently, the only way to definitively diagnose it is through biopsy, but this procedure can only detect problems at a relatively late stage. Being able to sensitively and non-invasively diagnose kidney rejection at an early stage would allow doctors to begin anti-rejection medication sooner. Researchers previously found that high levels of a cytokine protein called CXCL9 in the urine of kidney transplant patients was an early warning sign of rejection. But the current method for measuring CXCL9 (an enzyme-linked immunosorbent assay, or ELISA) doesn't work very well in urine, limiting its sensitivity. So, the researchers wanted to develop a more sensitive technique for non-invasively diagnosing acute kidney rejection from urine.

The researchers based their detection method on CRISPR/Cas12a gene editing technology. In the presence of the CXCL9 protein, the CRISPR/Cas12a enzyme cuts a probe to produce a fluorescent signal. The researchers boosted the fluorescent signal by attaching a DNA barcode that aggregates a large number of CRISPR/Cas12a molecules, and is subsequently bound to an antibody that recognizes CXCL9. Importantly, unlike other CRISPR-based detection methods, PCR amplification is not required, which makes the method easier to adapt to a device that could be used in a doctor's office or even a patient's home. When tested on urine samples from 11 kidney transplant patients, the new system accurately measured CXCL9 levels, with values very similar to an ELISA. However, because the immuno-CRISPR system is about seven times more sensitive than an ELISA, it might be able to detect kidney transplant rejection at a very early stage, the researchers say.

Related Links:
Rensselaer Polytechnic Institute 

Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Automatic CLIA Analyzer
Shine i9000

Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more