3D Imaging Method Determines Prostate Cancer Aggressiveness
|
By LabMedica International staff writers Posted on 23 Dec 2021 |

Image: A screenshot of a volume rendering of glands in two 3D biopsy samples from prostates (yellow: the outer walls of the gland; red: the fluid-filled space inside the gland). The cancer sample (top) shows smaller and more densely packed glands compared to the benign tissue sample (bottom) (Photo courtesy of Xie et al./Cancer Research)
Prostate cancer is the most common cancer for men and, for men in the USA, and it is the second leading cause of death. Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists.
Some prostate cancers (PCas)might be slow-growing and can be monitored over time whereas others need to be treated right away. To determine how aggressive someone's cancer is, doctors look for abnormalities in histological specimens of biopsied tissue on a slide, but this 2D method makes it hard to properly diagnose borderline cases.
Biomedical Engineers at the University of Washington (Seattle, WA, USA) and their colleagues developed a workflow for non-destructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analog of standard H&E staining. The team imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which 118 biopsies contained cancer.
The biopsy cores were processed stained to mimic the typical staining used in the 2D method. The team then imaged each entire biopsy core using an open-top light-sheet microscope, which uses a sheet of light to optically “slice” through and image a tissue sample without destroying it. Multi-channel illumination was provided by a fourchannel digitally controlled laser package (Cobolt Skyra Lasers, HÜBNER Photonics, Kassel, Germany). Tissues were imaged at near Nyquist sampling of ∼0.44 μm/pixel. The volumetric imaging time was approximately 0.5 min per mm3 of tissue for each wavelength channel. This allowed each biopsy (~1 × 1 × 20 mm), stained with two fluorophores (T&E), to be imaged in ~20 minutes.
The scientists reported that the 3D images provided more information than a 2D image, specifically, details about the complex tree-like structure of the glands throughout the tissue. These additional features increased the likelihood that the computer would correctly predict a cancer's aggressiveness. They used new AI methods, including deep-learning image transformation techniques, to help manage and interpret the large datasets this project generated. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of low- to intermediate-risk PCa patients based on their clinical biochemical recurrence (BCR) outcomes.
Jonathan Liu, PhD, a professor of mechanical engineering and of bioengineering and a senior author of the study, said, “We show for the first time that compared to traditional pathology, where a small fraction of each biopsy is examined in 2D on microscope slides, the ability to examine 100% of a biopsy in 3D is more informative and accurate. This is exciting because it is the first of hopefully many clinical studies that will demonstrate the value of non-destructive 3D pathology for clinical decision-making, such as determining which patients require aggressive treatments or which subsets of patients would respond best to certain drugs.”
The authors concluded that the results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. The study was published on December 1, 2021 in the journal Cancer Research.
Related Links:
University of Washington
HÜBNER Photonics
Some prostate cancers (PCas)might be slow-growing and can be monitored over time whereas others need to be treated right away. To determine how aggressive someone's cancer is, doctors look for abnormalities in histological specimens of biopsied tissue on a slide, but this 2D method makes it hard to properly diagnose borderline cases.
Biomedical Engineers at the University of Washington (Seattle, WA, USA) and their colleagues developed a workflow for non-destructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analog of standard H&E staining. The team imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which 118 biopsies contained cancer.
The biopsy cores were processed stained to mimic the typical staining used in the 2D method. The team then imaged each entire biopsy core using an open-top light-sheet microscope, which uses a sheet of light to optically “slice” through and image a tissue sample without destroying it. Multi-channel illumination was provided by a fourchannel digitally controlled laser package (Cobolt Skyra Lasers, HÜBNER Photonics, Kassel, Germany). Tissues were imaged at near Nyquist sampling of ∼0.44 μm/pixel. The volumetric imaging time was approximately 0.5 min per mm3 of tissue for each wavelength channel. This allowed each biopsy (~1 × 1 × 20 mm), stained with two fluorophores (T&E), to be imaged in ~20 minutes.
The scientists reported that the 3D images provided more information than a 2D image, specifically, details about the complex tree-like structure of the glands throughout the tissue. These additional features increased the likelihood that the computer would correctly predict a cancer's aggressiveness. They used new AI methods, including deep-learning image transformation techniques, to help manage and interpret the large datasets this project generated. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of low- to intermediate-risk PCa patients based on their clinical biochemical recurrence (BCR) outcomes.
Jonathan Liu, PhD, a professor of mechanical engineering and of bioengineering and a senior author of the study, said, “We show for the first time that compared to traditional pathology, where a small fraction of each biopsy is examined in 2D on microscope slides, the ability to examine 100% of a biopsy in 3D is more informative and accurate. This is exciting because it is the first of hopefully many clinical studies that will demonstrate the value of non-destructive 3D pathology for clinical decision-making, such as determining which patients require aggressive treatments or which subsets of patients would respond best to certain drugs.”
The authors concluded that the results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer. The study was published on December 1, 2021 in the journal Cancer Research.
Related Links:
University of Washington
HÜBNER Photonics
Latest Technology News
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Channels
Clinical Chemistry
view channel
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read more
POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
Pseudomonas aeruginosa is a major cause of hospital-acquired and ventilator-associated pneumonia, particularly in lung transplant recipients and patients with structural lung disease. Its ability to form... Read moreMolecular Diagnostics
view channel
Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis
Endometriosis affects an estimated 1 in 10 women globally, yet diagnosis can take 7 to 10 years on average due to the invasive nature of laparoscopy and lack of accurate, non-invasive tests.... Read more
World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
Rapid point-of-need diagnostics are of critical need, especially in the areas of infectious disease and cancer testing and monitoring. Now, a direct-from-specimen platform that performs genomic analysis... Read more
Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae
Antibiotic resistance is a steadily escalating threat to global healthcare, making common infections harder to treat and increasing the risk of severe complications. One of the most concerning pathogens... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read moreTechnology
view channel
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read more
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more




 assay.jpg)


