Metabolomics-Based Test Detects Early-Stage Lung Cancer and Predicts Patient Survival Time
|
By LabMedica International staff writers Posted on 18 Feb 2022 |

Image: Magic-Angle-Spinning (MAS) nuclear magnetic resonance (NMR) was used to establish the lung cancer predictive model. The sample (blue) is rotating with high frequency inside the main magnetic field (B0). It is tilted by the magic angle θm with respect to the direction of the magnetic field orientation (Photo courtesy of Wikimedia Commons)
A predictive model based on alterations in blood metabolites measured by high-resolution magnetic resonance spectroscopy can detect early-stage lung cancer.
Early-stage lung cancer is mostly asymptomatic, so the disease is usually only diagnosed at a late stage when the survival rate is extremely low. To facilitate earlier detection of lung cancer, investigators at Harvard Medical School’s Massachusetts General Hospital (Boston, USA) created a lung cancer predictive model based on metabolomics profiles in blood samples. Metabolomics is the systematic study of the unique small-molecule chemical fingerprints that specific cellular processes leave behind.
To build a predictive model to indicate lung cancer presence and patient survival using serum samples collected prior to their disease diagnoses, the investigators employed high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS).
The investigators analyzed 10 microliter serum samples obtained from 79 patients before (within five years) and at the time of lung cancer diagnosis. Disease predictive models were established by comparing serum metabolomic patterns between training cohorts: patients with lung cancer at time of diagnosis, and matched healthy controls. These predictive models were then applied to evaluate serum samples of validation and testing cohorts, all collected from patients before their lung cancer diagnosis.
Results revealed that the predictive model could detect changes in blood metabolomic profiles that were intermediate between healthy and disease states. The model was applied to a different group of 54 patients with non-small-cell lung carcinoma (NSCLC) to analyze blood samples obtained before and after their cancer diagnosis. Results confirmed that the model’s predictions were accurate. Furthermore, values from the metabolomics predictive model measured from prior-to-diagnosis sera could be used to predict five-year survival for patients with localized disease.
“Our study demonstrates the potential for developing a sensitive screening tool for the early detection of lung cancer,” said senior author Dr. Leo L. Cheng. associate professor of radiology at Harvard Medical School. “The predictive model we constructed can identify which people may be harboring lung cancer. Individuals with suspicious findings would then be referred for further evaluation by imaging tests, such as low-dose CT, for a definitive diagnosis.”
The predictive model for early diagnosis of lung cancer was described in the December 13, 2021, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.
Related Links:
Massachusetts General Hospital
Early-stage lung cancer is mostly asymptomatic, so the disease is usually only diagnosed at a late stage when the survival rate is extremely low. To facilitate earlier detection of lung cancer, investigators at Harvard Medical School’s Massachusetts General Hospital (Boston, USA) created a lung cancer predictive model based on metabolomics profiles in blood samples. Metabolomics is the systematic study of the unique small-molecule chemical fingerprints that specific cellular processes leave behind.
To build a predictive model to indicate lung cancer presence and patient survival using serum samples collected prior to their disease diagnoses, the investigators employed high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS).
The investigators analyzed 10 microliter serum samples obtained from 79 patients before (within five years) and at the time of lung cancer diagnosis. Disease predictive models were established by comparing serum metabolomic patterns between training cohorts: patients with lung cancer at time of diagnosis, and matched healthy controls. These predictive models were then applied to evaluate serum samples of validation and testing cohorts, all collected from patients before their lung cancer diagnosis.
Results revealed that the predictive model could detect changes in blood metabolomic profiles that were intermediate between healthy and disease states. The model was applied to a different group of 54 patients with non-small-cell lung carcinoma (NSCLC) to analyze blood samples obtained before and after their cancer diagnosis. Results confirmed that the model’s predictions were accurate. Furthermore, values from the metabolomics predictive model measured from prior-to-diagnosis sera could be used to predict five-year survival for patients with localized disease.
“Our study demonstrates the potential for developing a sensitive screening tool for the early detection of lung cancer,” said senior author Dr. Leo L. Cheng. associate professor of radiology at Harvard Medical School. “The predictive model we constructed can identify which people may be harboring lung cancer. Individuals with suspicious findings would then be referred for further evaluation by imaging tests, such as low-dose CT, for a definitive diagnosis.”
The predictive model for early diagnosis of lung cancer was described in the December 13, 2021, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America.
Related Links:
Massachusetts General Hospital
Latest Molecular Diagnostics News
- New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
- Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
- New Diagnostic Marker for Ovarian Cancer to Enable Early Disease Detection

- Urine Test Detects Early Stage Pancreatic Cancer
- Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
- Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients
- Blood Test Guides Post-Surgical Immunotherapy for Muscle-Invasive Bladder Cancer
- Mitochondrial DNA Mutations from Kidney Stressors Could Predict Future Organ Decline
- Blood Test Could Predict Bariatric Surgery Outcomes in Teenagers
- ctDNA Blood Test to Help Personalize Postsurgical Colon Cancer Treatment
- AI Powered Blood Test Predicts Suicide Risk in Bipolar Patients
- DNA Sensor Enables Molecular Detection from Single Blood Drop
- DNA-Powered Test Accurately Detects E. Coli Lookalike Bacteria
- World’s Fastest DNA Sequencing Technique to Revolutionize NICU Genomic Care
- Blood Test Uses Cell-Free DNA to Detect ALS Faster and More Accurately
- Multi-Cancer Early Detection Blood Test Increases Cancer Detection
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








