Circulating ACE2 Activity Predicts Mortality and Severity in COVID-19 Patients
|
By LabMedica International staff writers Posted on 16 Dec 2021 |

Image: The CLARIOstar Plus is a multi-mode microplate reader with advanced LVF Monochromators, highly sensitive filters, and an ultra-fast UV/vis spectrometer (Photo courtesy of BMG Labtech)
Coronavirus disease 2019 (COVID-19) has been associated with significant morbidity and mortality worldwide in the last two years. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Angiotensin-converting enzyme 2 (ACE2) represents the main receptor for SARS-CoV-2 to enter endothelial cells. ACE2 mediates the infection of endothelial cells, which induces endothelial activation and damage resulting in substantial release of von Willebrand factor and enhanced levels of soluble E-selectin.
Medical Laboratorians at the University of Debrecen (Debrecen, Hungary) recruited for a retrospective clinical study, 176 consecutive COVID-19 patients older than 18 years of age from two medical centers. These subjects suffered from different degrees of acute respiratory distress at admission and were confirmed to be positive for COVID-19 disease by reverse transcription polymerase chain reaction (RT-qPCR) test of a nasopharyngeal swab.
Two-thirds of these patients had a positive hemoculture (e.g. Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, or Streptococcus pneumoniae), while the rest of individuals were culture-negative. All subjects had peripheral blood samples drawn at admission, and follow-up samples were also available before discharge or death in case of 106 subjects. The analysis of serum ACE2 activity was performed by a specific quenched fluorescent substrate (Peptide2, Chantilly, VA, USA). The cleavage of the quenched Mca-APK(Dnp) to liberate the fluorescent K(Dnp) was recorded using 340-nm excitation and 405-nm emission filters in a CLARIOstar microplate reader (BMG Labtech, Ortenberg, Germany).
Routinely available laboratory serum tests (i.e. CRP, PCT, IL-6, cTnT and ferritin) were determined by electro-chemiluminescent immunoassays on a Cobas e 411 analyzer, while enzyme activities (i.e. AST, ALT, LDH) and creatinine with urea levels were analyzed by kinetic colorimetric assays on a Cobas 8000 analyzer (Roche Diagnostics, Mannheim, Germany).
The investigators reported that initial ACE2 activity was significantly higher in critically ill COVID-19 patients (54.4 [36.7-90.8] mU/L) than in severe COVID-19 (34.5 [25.2-48.7] mU/L) and non-COVID-19 sepsis patients (40.9 [21.4-65.7] mU/L) regardless of comorbidities. Further, there was a tendency for higher ACE2 activity in relation to increasing age regardless of disease severity. Circulating ACE2 activity correlated with inflammatory biomarkers and was further elevated during hospital stay in critically ill patients. Based on ROC-curve analysis and logistic regression test, baseline ACE2 independently indicated the severity of COVID-19 with an AUC value of 0.701. Overall, non-survivors demonstrated significantly higher ACE2 activities (54.6 [IQR 37.3-94.7] mU/L) at hospital admission compared with survivors (35.6 [25.3-58.5] mU/L).
Miklós Fagyas, MD, PhD, an assistant professor and lead author of the study, said, “Serum ACE2 activity at hospital admission correlates with COVID-19 severity and predicts mortality, independently of the pulmonary function (Horowitz index). It appears that serum ACE2 is a non-specific biomarker in systemic inflammation, since it is also elevated in severe sepsis.” The study was published on November 25, 2021 in the International Journal of Infectious Diseases.
Related Links:
University of Debrecen
Peptide2
BMG Labtech
Roche Diagnostics
Angiotensin-converting enzyme 2 (ACE2) represents the main receptor for SARS-CoV-2 to enter endothelial cells. ACE2 mediates the infection of endothelial cells, which induces endothelial activation and damage resulting in substantial release of von Willebrand factor and enhanced levels of soluble E-selectin.
Medical Laboratorians at the University of Debrecen (Debrecen, Hungary) recruited for a retrospective clinical study, 176 consecutive COVID-19 patients older than 18 years of age from two medical centers. These subjects suffered from different degrees of acute respiratory distress at admission and were confirmed to be positive for COVID-19 disease by reverse transcription polymerase chain reaction (RT-qPCR) test of a nasopharyngeal swab.
Two-thirds of these patients had a positive hemoculture (e.g. Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, or Streptococcus pneumoniae), while the rest of individuals were culture-negative. All subjects had peripheral blood samples drawn at admission, and follow-up samples were also available before discharge or death in case of 106 subjects. The analysis of serum ACE2 activity was performed by a specific quenched fluorescent substrate (Peptide2, Chantilly, VA, USA). The cleavage of the quenched Mca-APK(Dnp) to liberate the fluorescent K(Dnp) was recorded using 340-nm excitation and 405-nm emission filters in a CLARIOstar microplate reader (BMG Labtech, Ortenberg, Germany).
Routinely available laboratory serum tests (i.e. CRP, PCT, IL-6, cTnT and ferritin) were determined by electro-chemiluminescent immunoassays on a Cobas e 411 analyzer, while enzyme activities (i.e. AST, ALT, LDH) and creatinine with urea levels were analyzed by kinetic colorimetric assays on a Cobas 8000 analyzer (Roche Diagnostics, Mannheim, Germany).
The investigators reported that initial ACE2 activity was significantly higher in critically ill COVID-19 patients (54.4 [36.7-90.8] mU/L) than in severe COVID-19 (34.5 [25.2-48.7] mU/L) and non-COVID-19 sepsis patients (40.9 [21.4-65.7] mU/L) regardless of comorbidities. Further, there was a tendency for higher ACE2 activity in relation to increasing age regardless of disease severity. Circulating ACE2 activity correlated with inflammatory biomarkers and was further elevated during hospital stay in critically ill patients. Based on ROC-curve analysis and logistic regression test, baseline ACE2 independently indicated the severity of COVID-19 with an AUC value of 0.701. Overall, non-survivors demonstrated significantly higher ACE2 activities (54.6 [IQR 37.3-94.7] mU/L) at hospital admission compared with survivors (35.6 [25.3-58.5] mU/L).
Miklós Fagyas, MD, PhD, an assistant professor and lead author of the study, said, “Serum ACE2 activity at hospital admission correlates with COVID-19 severity and predicts mortality, independently of the pulmonary function (Horowitz index). It appears that serum ACE2 is a non-specific biomarker in systemic inflammation, since it is also elevated in severe sepsis.” The study was published on November 25, 2021 in the International Journal of Infectious Diseases.
Related Links:
University of Debrecen
Peptide2
BMG Labtech
Roche Diagnostics
Latest Microbiology News
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
Pneumonia continues to be one of the leading causes of death in low- and middle-income countries, where limited access to advanced laboratory infrastructure hampers early and accurate diagnosis.... Read more
Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
Early diagnosis of Parkinson’s disease remains one of the greatest challenges in neurology. The condition, which affects nearly 12 million people globally, is typically identified only after significant... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








