Circulating ACE2 Activity Predicts Mortality and Severity in COVID-19 Patients
By LabMedica International staff writers Posted on 16 Dec 2021 |

Image: The CLARIOstar Plus is a multi-mode microplate reader with advanced LVF Monochromators, highly sensitive filters, and an ultra-fast UV/vis spectrometer (Photo courtesy of BMG Labtech)
Coronavirus disease 2019 (COVID-19) has been associated with significant morbidity and mortality worldwide in the last two years. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Angiotensin-converting enzyme 2 (ACE2) represents the main receptor for SARS-CoV-2 to enter endothelial cells. ACE2 mediates the infection of endothelial cells, which induces endothelial activation and damage resulting in substantial release of von Willebrand factor and enhanced levels of soluble E-selectin.
Medical Laboratorians at the University of Debrecen (Debrecen, Hungary) recruited for a retrospective clinical study, 176 consecutive COVID-19 patients older than 18 years of age from two medical centers. These subjects suffered from different degrees of acute respiratory distress at admission and were confirmed to be positive for COVID-19 disease by reverse transcription polymerase chain reaction (RT-qPCR) test of a nasopharyngeal swab.
Two-thirds of these patients had a positive hemoculture (e.g. Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, or Streptococcus pneumoniae), while the rest of individuals were culture-negative. All subjects had peripheral blood samples drawn at admission, and follow-up samples were also available before discharge or death in case of 106 subjects. The analysis of serum ACE2 activity was performed by a specific quenched fluorescent substrate (Peptide2, Chantilly, VA, USA). The cleavage of the quenched Mca-APK(Dnp) to liberate the fluorescent K(Dnp) was recorded using 340-nm excitation and 405-nm emission filters in a CLARIOstar microplate reader (BMG Labtech, Ortenberg, Germany).
Routinely available laboratory serum tests (i.e. CRP, PCT, IL-6, cTnT and ferritin) were determined by electro-chemiluminescent immunoassays on a Cobas e 411 analyzer, while enzyme activities (i.e. AST, ALT, LDH) and creatinine with urea levels were analyzed by kinetic colorimetric assays on a Cobas 8000 analyzer (Roche Diagnostics, Mannheim, Germany).
The investigators reported that initial ACE2 activity was significantly higher in critically ill COVID-19 patients (54.4 [36.7-90.8] mU/L) than in severe COVID-19 (34.5 [25.2-48.7] mU/L) and non-COVID-19 sepsis patients (40.9 [21.4-65.7] mU/L) regardless of comorbidities. Further, there was a tendency for higher ACE2 activity in relation to increasing age regardless of disease severity. Circulating ACE2 activity correlated with inflammatory biomarkers and was further elevated during hospital stay in critically ill patients. Based on ROC-curve analysis and logistic regression test, baseline ACE2 independently indicated the severity of COVID-19 with an AUC value of 0.701. Overall, non-survivors demonstrated significantly higher ACE2 activities (54.6 [IQR 37.3-94.7] mU/L) at hospital admission compared with survivors (35.6 [25.3-58.5] mU/L).
Miklós Fagyas, MD, PhD, an assistant professor and lead author of the study, said, “Serum ACE2 activity at hospital admission correlates with COVID-19 severity and predicts mortality, independently of the pulmonary function (Horowitz index). It appears that serum ACE2 is a non-specific biomarker in systemic inflammation, since it is also elevated in severe sepsis.” The study was published on November 25, 2021 in the International Journal of Infectious Diseases.
Related Links:
University of Debrecen
Peptide2
BMG Labtech
Roche Diagnostics
Angiotensin-converting enzyme 2 (ACE2) represents the main receptor for SARS-CoV-2 to enter endothelial cells. ACE2 mediates the infection of endothelial cells, which induces endothelial activation and damage resulting in substantial release of von Willebrand factor and enhanced levels of soluble E-selectin.
Medical Laboratorians at the University of Debrecen (Debrecen, Hungary) recruited for a retrospective clinical study, 176 consecutive COVID-19 patients older than 18 years of age from two medical centers. These subjects suffered from different degrees of acute respiratory distress at admission and were confirmed to be positive for COVID-19 disease by reverse transcription polymerase chain reaction (RT-qPCR) test of a nasopharyngeal swab.
Two-thirds of these patients had a positive hemoculture (e.g. Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, or Streptococcus pneumoniae), while the rest of individuals were culture-negative. All subjects had peripheral blood samples drawn at admission, and follow-up samples were also available before discharge or death in case of 106 subjects. The analysis of serum ACE2 activity was performed by a specific quenched fluorescent substrate (Peptide2, Chantilly, VA, USA). The cleavage of the quenched Mca-APK(Dnp) to liberate the fluorescent K(Dnp) was recorded using 340-nm excitation and 405-nm emission filters in a CLARIOstar microplate reader (BMG Labtech, Ortenberg, Germany).
Routinely available laboratory serum tests (i.e. CRP, PCT, IL-6, cTnT and ferritin) were determined by electro-chemiluminescent immunoassays on a Cobas e 411 analyzer, while enzyme activities (i.e. AST, ALT, LDH) and creatinine with urea levels were analyzed by kinetic colorimetric assays on a Cobas 8000 analyzer (Roche Diagnostics, Mannheim, Germany).
The investigators reported that initial ACE2 activity was significantly higher in critically ill COVID-19 patients (54.4 [36.7-90.8] mU/L) than in severe COVID-19 (34.5 [25.2-48.7] mU/L) and non-COVID-19 sepsis patients (40.9 [21.4-65.7] mU/L) regardless of comorbidities. Further, there was a tendency for higher ACE2 activity in relation to increasing age regardless of disease severity. Circulating ACE2 activity correlated with inflammatory biomarkers and was further elevated during hospital stay in critically ill patients. Based on ROC-curve analysis and logistic regression test, baseline ACE2 independently indicated the severity of COVID-19 with an AUC value of 0.701. Overall, non-survivors demonstrated significantly higher ACE2 activities (54.6 [IQR 37.3-94.7] mU/L) at hospital admission compared with survivors (35.6 [25.3-58.5] mU/L).
Miklós Fagyas, MD, PhD, an assistant professor and lead author of the study, said, “Serum ACE2 activity at hospital admission correlates with COVID-19 severity and predicts mortality, independently of the pulmonary function (Horowitz index). It appears that serum ACE2 is a non-specific biomarker in systemic inflammation, since it is also elevated in severe sepsis.” The study was published on November 25, 2021 in the International Journal of Infectious Diseases.
Related Links:
University of Debrecen
Peptide2
BMG Labtech
Roche Diagnostics
Latest Microbiology News
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
- Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
- POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
- Rapid Diagnostic Test Slashes Sepsis Mortality by 39%
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
Blood Test Could Detect Proteins Linked to Alzheimer's Disease and Memory Loss
Alzheimer’s disease has long been associated with sticky amyloid plaques in the brain, but these markers alone do not fully explain the memory loss and cognitive decline patients experience.... Read more
Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear
Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more
First-of-Its-Kind Blood Test Detects Over 50 Cancer Types
Many cancers lack routine screening, so patients are often diagnosed only after tumors grow and spread, when options are limited. A faster, less invasive approach that broadens early detection could shift... Read more
Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk
Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more