LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Breath Test Can Identify COVID-19 in Critically Ill Patients

By LabMedica International staff writers
Posted on 17 Nov 2021
Print article
Image: Breath Test Can Identify COVID-19 in Critically Ill Patients and Asymptomatic Individuals (Photo courtesy of Ohio State University Wexner Medical Center)
Image: Breath Test Can Identify COVID-19 in Critically Ill Patients and Asymptomatic Individuals (Photo courtesy of Ohio State University Wexner Medical Center)
The coronaviruses known to infect humans generally only caused mild upper respiratory tract infectious symptoms. They are also known to delay the innate immune response to infection, and they have affinity for primary epithelial cells

A common feature of respiratory viral infections is the release of inflammatory cytokines. These cytokines led to the production and release of volatile organic compounds (VOC), nitric oxide (NO), and ammonia (NH4). Novel breathalyzer technology utilizes a single selective, resistive chemosensor made of a catalytically active, semiconducting material, targeting NO and ammonia molecules in breath.

Bioengineers and other scientists associated with the Ohio State University Wexner Medical Center (Columbus, OH, USA) have developed a COVID-19 breathalyzer which is an electronic device that uses a single catalytically active, resistive sensor that is highly selective to NO. The sensitivity of the γ-phase tungsten trioxide (WO3) sensor to NO, selectivity and response in the presence of various interfering compounds have been demonstrated before and are shown here for the specific conditions of this study, simulating human exhaled breath having various concentrations of NO and of the most abundant VOCs in breath: acetone, isoprene, and ammonia.

The team followed 46 patients who were admitted to the intensive care unit (ICU) with acute respiratory failure that required mechanical ventilation. Half of the patients had an active COVID-19 infection and the remaining half did not. All patients had a PCR COVID-19 test when they were admitted to the unit. The scientists collected samples from the exhalation port of the ventilator in 1-liter breath bags (Tedlar bags, CEL Scientific, Cerritos, CA, USA) from the patients on day 1, 3, 7, and 10 of their inpatient stay. The breath bag samples were tested within four hours of sample collection in a laboratory.

The investigators reported that the breathalyzer detected high exhaled nitric oxide (NO) concentration with a distinctive pattern for patients with active COVID-19 pneumonia. The COVID-19 “breath print” has the pattern of the small Greek letter omega (ω). The “breath print” identified patients with COVID-19 pneumonia with 88% accuracy upon their admission to the ICU. Furthermore, the sensitivity index of the breath print (which scales with the concentration of the key biomarker ammonia) appears to correlate with duration of COVID-19 infection. The negative predictive value of the breathalyzer was excellent at 90%.

Matthew C. Exline, MD, a Pulmonologist and senior author of the study, said, “The gold standard for diagnosis of COVID-19 is a polymerase chain reaction (PCR) test that requires an uncomfortable nasal swab and time in a laboratory to process the sample and obtain the results. The breathalyzer test used in our study can detect COVID-19 within 15 seconds.”

The authors concluded that the use of breathalyzer technology to rapidly diagnose patients with respiratory infections has the potential to greatly improve our ability to rapidly screen both patients and asymptomatic individuals. This study is the first to show the practical application of this emerging technology in a homogenous group of patients with a single infection. The study was published on October 28, 2021 in the journal PLOS ONE.

Related Links:
Ohio State University Wexner Medical Center
CEL Scientific


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
ACTH Assay
ACTH ELISA
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.