We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Circulating Calprotectin as Biomarker in Neutrophil-Related Inflammation

By LabMedica International staff writers
Posted on 15 Apr 2021
Print article
Image: The Phadia 200 instrument is small enough to fit on a benchtop, and yet capable of running the complete menu of more than 700 different ImmunoCAP and EliA tests to aid in the diagnosis of allergy and autoimmune diseases (Photo courtesy of Thermo Fisher Scientific)
Image: The Phadia 200 instrument is small enough to fit on a benchtop, and yet capable of running the complete menu of more than 700 different ImmunoCAP and EliA tests to aid in the diagnosis of allergy and autoimmune diseases (Photo courtesy of Thermo Fisher Scientific)
Calprotectin (CLP) acts as an endogenous ligand of different cell-surface proteins like Toll-like receptor 4 and receptor of advanced glycation end-products facilitating a local proinflammatory effect. CLP is mostly secreted through an active, calcium-dependent Protein Kinase C (PKC) pathway, next to the passive leakage from necrotic cells and release in neutrophil extracellular traps (NET).

Since CLP is released at the local site of inflammation, CLP plasma levels have been suggested to be a biomarker that reflects local disease activity in inflammatory diseases, in contrast to conventional acute-phase proteins such as C-reactive protein (CRP), which are mainly produced by hepatocytes after non-specific, systemic inflammatory activity. In addition to mirroring local inflammation processes, CLP is relatively stable and easily measurable in blood.

Biomedical Scientists at the Onze-Lieve-Vrouw Hospital (OLV, Aalst, Belgium) and their colleagues established reference values for 100 healthy volunteers (median age [range] = 42 years [21–64]; 58% female). At time of sampling, all healthy volunteers had no physical complaints and had CRP levels of less than 5.0 mg/L. To evaluate pre-analytical conditions, four rheumatoid arthritis (RA) patients (age = 60 years [56–73]; 50% female) with active disease, median CRP 14.2 mg/L (range = 2.7–73.3 mg/L)] were included.

Circulating CLP was measured in serum and plasma with the EliA Calprotectin 2 assay, a sandwich-principle-based fluoro-enzyme-immunoassay (FEIA) on the Phadia 200 instrument (serum/plasma protocol, Thermo Fisher Scientific, Freiburg, Germany), which uses monoclonal mouse anti-calprotectin antibodies highly specific for calprotectin’s heterodimeric complexes. Different sample types were investigated: serum with/without gel separator, heparin, EDTA and citrate plasma, pre-centrifugation time (<2 hours, 6 hours, 24 hours), storage condition (2–8 °C, 18–25 °C, 30 °C) and storage time (24 hours, 72 hours, 7 days).

The investigators reported that in healthy controls, baseline CLP concentrations in serum were more than double the concentration in EDTA and citrate plasma (0.909 µg/mL versus 0.259 µg/mL and 0.261 µg/mL respectively). Heparin, EDTA and citrate stabilized CLP concentrations for up to 6 hours before centrifugation, whereas significant increases in CLP levels were observed when serum was left untreated during that time period.

The authors concluded that their data revealed that in both healthy controls and RA patients serum CLP levels are considerably higher in serum than in plasma. The establishment of reference values in healthy controls showed that 95% upper limits were both sample type- and CRP-dependent. Serum tubes need to be centrifuged within two hours and plasma tubes within six hours after blood collection. All investigated sample types can be stored refrigerated (2–8 °C) for up to seven days, at room temperature (18–25 °C) for up to 24 hours, frozen (−20 °C) for up to three months and can have five freeze-thaw cycles without a relevant change in CLP concentration. The study was published on March 6, 2021 in the journal Clinica Chimica Acta.

Related Links:
OLV Hospital
Phadia


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Vaginitis Test
Allplex Vaginitis Screening Assay
New
Multi-Function Pipetting Platform
apricot PP5

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.