Paper-Based Microneedle Skin Patch for Continuous Glucose Monitoring
|
By LabMedica International staff writers Posted on 23 Sep 2020 |

Image: Illustration demonstrating painless and biodegradable microneedles on a paper patch (Photo courtesy of University of Tokyo)
A microneedle skin patch for the continuous monitoring of an individual’s glucose level was designed to be a painless and disposable screening and diagnostic test for diabetes patients, as well as those with pre-diabetes.
Porous microneedles are expected to have a variety of potential applications in diagnostics owing to their ability to penetrate human skin painlessly and extract bio‐fluid by capillary action. Investigators at the University of Tokyo (Japan) have applied this technology for screening and monitoring levels of glucose.
The microneedles were fabricated by pouring a mixture of a melted biodegradable polymer and salt into the cone-shaped cavities of a micro-mold while applying heat. The mold was then inverted with the needles on the lower side, and the device was placed on top of a sheet of paper with high pressure applied from above. The high pressure forced the polymer mixture into the pores of the paper, securing the attachment and allowing fluid drawn through the needles to pass effortlessly into the paper. After removal from the mold, the needles were cooled in a solution that removed the salt, leaving behind pores, through which fluid could flow into the paper. A paper glucose sensor was then attached to the paper base of the needle array. The final product was disposable and biodegradable, and its use did not require any medical expertise or training.
The paper‐based glucose sensor was used to demonstrate the absorption property of the microneedles, and showed successful sample extraction and glucose concentration analysis from agarose gel‐based skin mimics. The investigators maintained that the platform had the potential to integrate various different paper‐based bio‐sensors in order to function as painless and disposable rapid screening and diagnostic tests for many metabolites.
"We have overcome this problem by developing a way to combine porous microneedles with paper-based sensors," said senior author Dr. Beomjoon Kim, professor in the institute of industrial science at the University of Tokyo. "The result is low-cost, disposable, and does not require any additional instruments."
The microneedle device was described in the August 2020 issue of the journal Medical Devices & Sensors.
Related Links:
University of Tokyo
Porous microneedles are expected to have a variety of potential applications in diagnostics owing to their ability to penetrate human skin painlessly and extract bio‐fluid by capillary action. Investigators at the University of Tokyo (Japan) have applied this technology for screening and monitoring levels of glucose.
The microneedles were fabricated by pouring a mixture of a melted biodegradable polymer and salt into the cone-shaped cavities of a micro-mold while applying heat. The mold was then inverted with the needles on the lower side, and the device was placed on top of a sheet of paper with high pressure applied from above. The high pressure forced the polymer mixture into the pores of the paper, securing the attachment and allowing fluid drawn through the needles to pass effortlessly into the paper. After removal from the mold, the needles were cooled in a solution that removed the salt, leaving behind pores, through which fluid could flow into the paper. A paper glucose sensor was then attached to the paper base of the needle array. The final product was disposable and biodegradable, and its use did not require any medical expertise or training.
The paper‐based glucose sensor was used to demonstrate the absorption property of the microneedles, and showed successful sample extraction and glucose concentration analysis from agarose gel‐based skin mimics. The investigators maintained that the platform had the potential to integrate various different paper‐based bio‐sensors in order to function as painless and disposable rapid screening and diagnostic tests for many metabolites.
"We have overcome this problem by developing a way to combine porous microneedles with paper-based sensors," said senior author Dr. Beomjoon Kim, professor in the institute of industrial science at the University of Tokyo. "The result is low-cost, disposable, and does not require any additional instruments."
The microneedle device was described in the August 2020 issue of the journal Medical Devices & Sensors.
Related Links:
University of Tokyo
Latest Technology News
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
- Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes
- Wireless Sweat Patch Could Be Used as Diagnostic Test for Cystic Fibrosis
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
AI Improves Cervical Cancer Screening in Low-Resource Settings
Access to cervical cancer screening in low- and middle-income countries remains limited, leaving many women without early detection for this life-threatening disease. The lack of access to laboratories,... Read more
New Multi-Omics Tool Illuminates Cancer Progression
Tracking how cancers evolve into more aggressive and therapy-resistant forms has long been a challenge for researchers. Many current tools can only capture limited genetic information from tumor samples,... Read moreTechnology
view channel
Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
Rapid and sensitive detection of small extracellular vesicles (sEVs)—key biomarkers in cancer and organ health monitoring—remains challenging due to the need for multiple preprocessing steps and bulky... Read more
AI Algorithm Assesses Progressive Decline in Kidney Function
Chronic kidney disease (CKD) affects more than 700 million people worldwide and remains a major global health challenge. The condition often progresses silently, and many patients remain undiagnosed until... Read more
Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
Influenza is one of the most dangerous infectious diseases worldwide, claiming around half a million lives each year. What makes it particularly insidious is that flu viruses are contagious even before... Read more
3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
Early-stage disease diagnosis depends on the ability to detect biomarkers with exceptional sensitivity and precision. However, traditional biosensing technologies struggle with achieving this at the micro-scale,... Read moreIndustry
view channelHologic to be Acquired by Blackstone and TPG
Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more
Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio
Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders
Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more






 Analyzer.jpg)
