Nanoparticle System Captures Heart-Disease Biomarker From Blood
By LabMedica International staff writers Posted on 20 Aug 2020 |

The TriVersa NanoMate LESA uses chip-based electrospray ionization technology that combines the benefits of liquid chromatography, mass spectrometry, chip-based infusion, fraction collection, and direct surface analysis into one integrated ion source platform (Photo courtesy of Advion BioSciences).
Physicians currently use an antibody-based test called enzyme-linked immunosorbent assay (ELISA) to help diagnose heart attacks based on elevated levels of cardiac troponin I (cTnI) in the patient's blood sample. While the ELISA test is sensitive, patients can have high levels of cTnI in the blood without having heart disease, which can lead to expensive and unnecessary treatments for patients.
Measuring low-concentration proteins in the blood like cTnI is a classic needle-in-a-haystack problem. Rare, meaningful biomarkers of disease are completely overwhelmed by common and diagnostically impractical proteins in the blood. Current methods use antibodies to enrich and capture proteins in a complex sample to identify and quantify proteins. But antibodies are expensive, have batch-to-batch variations, and can generate inconsistent results.
Chemists at the University of Wisconsin-Madison (Madison, WI, USA) designed nanoparticles of magnetite, a magnetic form of iron oxide, and linked it to a peptide of 13 amino acids long designed to specifically bind to cTnI. The peptide latches onto cTnI in a blood sample, and the nanoparticles can be collected together using a magnet. Nanoparticles and peptides are easily made in the laboratory, making them cheap and consistent.
The team, by using the nanoparticles, was able to effectively enrich cTnI in samples of human heart tissue and blood. Then they used advanced mass spectrometry, which can distinguish different proteins by their mass, to not only get an accurate measurement of cTnI, but also to assess the various modified forms of the protein. Samples were analyzed by direct infusion using a TriVersa NanoMate system (Advion BioSciences, Ithaca, NY, USA) coupled to a solariX XR 12-Tesla Fourier Transform Ion Cyclotron Resonance mass spectrometer (FTICR-MS, Bruker Daltonics, Bremen, Germany).
Like many proteins, cTnI can be modified by the body depending on factors like an underlying disease or changes in the environment. In the case of cTnI, the body adds various numbers of phosphate groups, small molecular tags that might change the function of cTnI. These variations are subtle and hard to track.
Ying Ge, PhD, a Professor of Chemistry and senior author of the study, said, “So we want to use our nanoproteomics system to look into more details at various modified forms of this protein rather than just measuring its concentration. That will help reveal molecular fingerprints of cTnI from each patient for precision medicine. with high-resolution mass spectrometry, We can now 'see' these molecular details of proteins, like the hidden iceberg beneath the surface.” The study was published on August 6, 2020 in the journal Nature Communications.
Related Links:
University of Wisconsin-Madison
Advion BioSciences
Bruker Daltonics
Measuring low-concentration proteins in the blood like cTnI is a classic needle-in-a-haystack problem. Rare, meaningful biomarkers of disease are completely overwhelmed by common and diagnostically impractical proteins in the blood. Current methods use antibodies to enrich and capture proteins in a complex sample to identify and quantify proteins. But antibodies are expensive, have batch-to-batch variations, and can generate inconsistent results.
Chemists at the University of Wisconsin-Madison (Madison, WI, USA) designed nanoparticles of magnetite, a magnetic form of iron oxide, and linked it to a peptide of 13 amino acids long designed to specifically bind to cTnI. The peptide latches onto cTnI in a blood sample, and the nanoparticles can be collected together using a magnet. Nanoparticles and peptides are easily made in the laboratory, making them cheap and consistent.
The team, by using the nanoparticles, was able to effectively enrich cTnI in samples of human heart tissue and blood. Then they used advanced mass spectrometry, which can distinguish different proteins by their mass, to not only get an accurate measurement of cTnI, but also to assess the various modified forms of the protein. Samples were analyzed by direct infusion using a TriVersa NanoMate system (Advion BioSciences, Ithaca, NY, USA) coupled to a solariX XR 12-Tesla Fourier Transform Ion Cyclotron Resonance mass spectrometer (FTICR-MS, Bruker Daltonics, Bremen, Germany).
Like many proteins, cTnI can be modified by the body depending on factors like an underlying disease or changes in the environment. In the case of cTnI, the body adds various numbers of phosphate groups, small molecular tags that might change the function of cTnI. These variations are subtle and hard to track.
Ying Ge, PhD, a Professor of Chemistry and senior author of the study, said, “So we want to use our nanoproteomics system to look into more details at various modified forms of this protein rather than just measuring its concentration. That will help reveal molecular fingerprints of cTnI from each patient for precision medicine. with high-resolution mass spectrometry, We can now 'see' these molecular details of proteins, like the hidden iceberg beneath the surface.” The study was published on August 6, 2020 in the journal Nature Communications.
Related Links:
University of Wisconsin-Madison
Advion BioSciences
Bruker Daltonics
Latest Clinical Chem. News
- Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
- Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability
- Rapid Drug Test to Improve Treatment for Patients Presenting to Hospital
- AI Model Detects Cancer at Lightning Speed through Sugar Analyses
- First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring
Channels
Clinical Chemistry
view channel
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Genetic-Based Tool Predicts Survival Outcomes of Pancreatic Cancer Patients
A tumor marker is a substance found in the body that may signal the presence of cancer. These substances, which can include proteins, genes, molecules, or other biological compounds, are either produced... Read more
Urine Test Diagnoses Early-Stage Prostate Cancer
Prostate cancer is one of the leading causes of death among men worldwide. A major challenge in diagnosing the disease is the absence of reliable biomarkers that can detect early-stage tumors.... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more