Fidget Spinner Rapidly Detects Urinary Tract Infections
By LabMedica International staff writers Posted on 16 Jun 2020 |

Image: A fidget spinner for the point-of-care diagnosis of urinary tract infection (Photo courtesy of Ulsan National Institute of Science and Technology).
More than half of all women experience at least one episode of urinary tract infection (UTI) in their lifetime, with men also facing increasing risks of infection as they age. Current detection of UTIs relies on patients reporting symptoms followed by a laboratory culture of the urine for known bacterial culprits, which typically takes a few days.
Doctors tend to prescribe antibiotics to suppress any suspect cases of UTI before they get the test results, contributing to the increasing problem of antibiotic resistance. Dipstick tests that reduce the time taken for diagnoses come with a high chance for false positives. The point-of-care detection of pathogens in biological samples in resource-limited settings should be inexpensive, rapid, portable, simple and accurate.
A multidisciplinary and international team of scientists led by the Ulsan National Institute of Science and Technology (Ulsan, Republic of Korea) developed a fidget spinner-based device to detect UTIs from urine samples. The device was field tested on 39 patients in Tiruchirappalli, India who would have all been given antibiotics based on their symptoms alone. The team reported 59% of the patients were found to be over/under-treated with antibiotics, something that can be rectified using this novel device.
The custom-made fidget spinner rapidly concentrates pathogens in 1-mL samples of undiluted urine by more than 100-fold for the on-device colorimetric detection of bacterial load and pathogen identification. The test of the rectangular device with one or two nudges spins for a long time pushing any bacteria onto a membrane. This is then dyed, with a color change visible to the naked eye in less than one hour, which indicates the amount of bacterial load.
The device enabled the on-site detection of infection with the naked eye within 50 minutes in urine samples from the patients suspected of having a urinary tract infection. The team also showed that, in 30 clinical samples of urinary tract infection, the device can be used to perform an antimicrobial susceptibility test for the antimicrobial drugs ciprofloxacin and cefazolin within 120 minutes.
Another test gave a preliminary indication of the presence of antibiotic resistance. By testing the spun samples treated with different drugs and comparing them to untreated samples, the team was able to quickly make a decision on which antibiotic might work best to treat the UTI. While this does not compare to laboratory based tests for microbial resistance, it is still a useful add-on for resource poor settings that do not typically test for resistance.
The authors concluded that the test can be performed by novices and that there is no extensive training that is required to learn how to spin the device and read the results. The ease-of-use, low price point, availability of quick results, and immediate benefits such as reduction in prescription of antibiotics, makes the new spinner an attractive alternative for diagnosing UTIs. The study was published on May 18, 2020 in the journal Nature Biomedical Engineering.
Related Links:
Ulsan National Institute of Science and Technology
Doctors tend to prescribe antibiotics to suppress any suspect cases of UTI before they get the test results, contributing to the increasing problem of antibiotic resistance. Dipstick tests that reduce the time taken for diagnoses come with a high chance for false positives. The point-of-care detection of pathogens in biological samples in resource-limited settings should be inexpensive, rapid, portable, simple and accurate.
A multidisciplinary and international team of scientists led by the Ulsan National Institute of Science and Technology (Ulsan, Republic of Korea) developed a fidget spinner-based device to detect UTIs from urine samples. The device was field tested on 39 patients in Tiruchirappalli, India who would have all been given antibiotics based on their symptoms alone. The team reported 59% of the patients were found to be over/under-treated with antibiotics, something that can be rectified using this novel device.
The custom-made fidget spinner rapidly concentrates pathogens in 1-mL samples of undiluted urine by more than 100-fold for the on-device colorimetric detection of bacterial load and pathogen identification. The test of the rectangular device with one or two nudges spins for a long time pushing any bacteria onto a membrane. This is then dyed, with a color change visible to the naked eye in less than one hour, which indicates the amount of bacterial load.
The device enabled the on-site detection of infection with the naked eye within 50 minutes in urine samples from the patients suspected of having a urinary tract infection. The team also showed that, in 30 clinical samples of urinary tract infection, the device can be used to perform an antimicrobial susceptibility test for the antimicrobial drugs ciprofloxacin and cefazolin within 120 minutes.
Another test gave a preliminary indication of the presence of antibiotic resistance. By testing the spun samples treated with different drugs and comparing them to untreated samples, the team was able to quickly make a decision on which antibiotic might work best to treat the UTI. While this does not compare to laboratory based tests for microbial resistance, it is still a useful add-on for resource poor settings that do not typically test for resistance.
The authors concluded that the test can be performed by novices and that there is no extensive training that is required to learn how to spin the device and read the results. The ease-of-use, low price point, availability of quick results, and immediate benefits such as reduction in prescription of antibiotics, makes the new spinner an attractive alternative for diagnosing UTIs. The study was published on May 18, 2020 in the journal Nature Biomedical Engineering.
Related Links:
Ulsan National Institute of Science and Technology
Latest Microbiology News
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
- Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
- POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
- Rapid Diagnostic Test Slashes Sepsis Mortality by 39%
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
2-Hour Cancer Blood Test to Transform Tumor Detection
Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more
Automated High Throughput Immunoassay Test to Advance Neurodegenerative Clinical Research
Alzheimer’s disease and other neurodegenerative disorders remain difficult to diagnose and monitor accurately due to limitations in existing biomarkers. Traditional tau and phosphorylated tau measurements... Read more
Ultrasensitive Test Could Identify Earliest Molecular Signs of Metastatic Relapse in Breast Cancer Patients
HR+ (hormone receptor-positive) HER2- (human epidermal growth factor receptor 2-negative) breast cancer represents over 70% of all breast cancer cases and carries a significant risk of late recurrence.... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Novel Tool Uses Deep Learning for Precision Cancer Therapy
Nearly 50 new cancer therapies are approved each year, but selecting the right one for patients with highly individual tumor characteristics remains a major challenge. Physicians struggle to navigate the... Read more
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
VedaBio Partners With Mammoth Biosciences to Expand CRISPR-Based Diagnostic Technologies
VedaBio (San Diego, CA, USA) has entered into a non-exclusive license agreement with Mammoth Biosciences (Brisbane, CA, USA) for the use of select CRISPR-based technologies in diagnostic applications.... Read more