Non-Invasive Imaging Detects Cancer at Molecular Level
|
By LabMedica International staff writers Posted on 20 Aug 2019 |

Image: Scientists combined multiphoton microscopy with automated image and statistical analysis algorithms to distinguish between healthy and diseased tissue. In this image, collected in a completely label-free, noninvasive manner, collagen is colored green while ovarian metastatic cell clusters are presented in red (Photo courtesy of Tufts University).
For cancer patients the presence of metastases dictates the staging assessment, which in turn defines the appropriate treatment path selected. For gynecological malignancies, like ovarian carcinoma, it is of immense importance to differentiate between localized and metastatic disease status as that drastically affects management.
For in situ, real time diagnosis, novel imaging modalities that offer metabolic and structural information at the cellular and subcellular level can be of great help, especially since these modalities are being progressively incorporated in probes and micro-endoscopes that allow intra-vital access to organs that lie deeper in the body.
Biomedical scientists at Tufts University (Medford, MA, USA) and their colleagues collected samples from eight patients who underwent open laparotomy as part of routine medical care. Post completion of all intra-abdominal procedures of the operation, eight biopsies of healthy parietal peritoneum and if present of four peritoneal metastases were collected from each patient. All lesions were evaluated by a pathologist using standard hematoxylin and eosin histology.
The tissues were imaged employing a multiphoton laser scanning microscope to generate intrinsic fluorescence and second harmonic generation (SHG) images at 755 nm and 900 nm excitation respectively with signal emission collected at 460 ± 20 and 525 ± 25 nm. Laser light was focused on the sample using a 25x objective (0.9 NA / water-immersion), and neutral density filters were employed to achieve a power of 25–35 mW. At least two to three random fields per tissue were evaluated, reaching a total of 30 and 11 images for the healthy and metastatic biopsy tissue groups, respectively (512 × 512 pixels; 600-micron field of view; resolution of 1.17 microns per pixel). Imaging was focused within a depth of ∼20-100 microns from the mesothelial surface of the tissues.
The team found that healthy tissues displayed large variations in contrast and correlation features as a function of distance, corresponding to repetitive, increased local intensity fluctuations. Metastatic tissue images exhibited decreased contrast and correlation related values, representing more uniform intensity patterns and smaller fibers, indicating the destruction of the healthy stroma by the cancerous infiltration. Analyzing 41 images acquired from the biopsies, the technique correctly classified 40 out of 41 images (an accuracy of 97.5%). A total of 11 samples were correctly classified as metastatic (100% sensitivity) and 29 of 30 were correctly classified as healthy (96.6% specificity).
Dimitra Pouli, MD, PhD, a Pathology Resident and co-author of the study, said, “The method utilized in this work identifies in a completely label-free manner cellular and tissue features at the microscopic level, essentially acting like a biopsy without a knife,” The study was published in the August 2019 issue of the journal Biomedical Optics Express.
Related Links:
Tufts University
For in situ, real time diagnosis, novel imaging modalities that offer metabolic and structural information at the cellular and subcellular level can be of great help, especially since these modalities are being progressively incorporated in probes and micro-endoscopes that allow intra-vital access to organs that lie deeper in the body.
Biomedical scientists at Tufts University (Medford, MA, USA) and their colleagues collected samples from eight patients who underwent open laparotomy as part of routine medical care. Post completion of all intra-abdominal procedures of the operation, eight biopsies of healthy parietal peritoneum and if present of four peritoneal metastases were collected from each patient. All lesions were evaluated by a pathologist using standard hematoxylin and eosin histology.
The tissues were imaged employing a multiphoton laser scanning microscope to generate intrinsic fluorescence and second harmonic generation (SHG) images at 755 nm and 900 nm excitation respectively with signal emission collected at 460 ± 20 and 525 ± 25 nm. Laser light was focused on the sample using a 25x objective (0.9 NA / water-immersion), and neutral density filters were employed to achieve a power of 25–35 mW. At least two to three random fields per tissue were evaluated, reaching a total of 30 and 11 images for the healthy and metastatic biopsy tissue groups, respectively (512 × 512 pixels; 600-micron field of view; resolution of 1.17 microns per pixel). Imaging was focused within a depth of ∼20-100 microns from the mesothelial surface of the tissues.
The team found that healthy tissues displayed large variations in contrast and correlation features as a function of distance, corresponding to repetitive, increased local intensity fluctuations. Metastatic tissue images exhibited decreased contrast and correlation related values, representing more uniform intensity patterns and smaller fibers, indicating the destruction of the healthy stroma by the cancerous infiltration. Analyzing 41 images acquired from the biopsies, the technique correctly classified 40 out of 41 images (an accuracy of 97.5%). A total of 11 samples were correctly classified as metastatic (100% sensitivity) and 29 of 30 were correctly classified as healthy (96.6% specificity).
Dimitra Pouli, MD, PhD, a Pathology Resident and co-author of the study, said, “The method utilized in this work identifies in a completely label-free manner cellular and tissue features at the microscopic level, essentially acting like a biopsy without a knife,” The study was published in the August 2019 issue of the journal Biomedical Optics Express.
Related Links:
Tufts University
Latest Technology News
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
- Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
- Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Urine Test Could Replace Painful Kidney Biopsies for Lupus Patients
Lupus is an autoimmune disorder that causes the immune system to attack the body’s own tissues and organs. Among the five million people living with lupus globally, nearly half develop lupus nephritis,... Read more
Blood Test Guides Post-Surgical Immunotherapy for Muscle-Invasive Bladder Cancer
After surgery for muscle-invasive bladder cancer, many patients face uncertainty about whether residual cancer cells remain in their bodies. Now, a new international phase 3 study has demonstrated that... Read more
Mitochondrial DNA Mutations from Kidney Stressors Could Predict Future Organ Decline
Kidney-related diseases are alarmingly common: chronic kidney disease (CKD) affects more than one in seven U.S. adults, while about 20% of hospitalized adults are diagnosed with acute kidney injury (AKI).... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read moreTechnology
view channel
Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
Globally, over 300 million people live with Hepatitis B and C, and 40 million with HIV, according to WHO estimates. Diagnosing bloodborne viruses such as HIV and Hepatitis B and C remains challenging in... Read more
Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
Rapid and sensitive detection of small extracellular vesicles (sEVs)—key biomarkers in cancer and organ health monitoring—remains challenging due to the need for multiple preprocessing steps and bulky... Read moreIndustry
view channel
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more







