We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Non-Invasive Imaging Detects Cancer at Molecular Level

By LabMedica International staff writers
Posted on 20 Aug 2019
Image: Scientists combined multiphoton microscopy with automated image and statistical analysis algorithms to distinguish between healthy and diseased tissue. In this image, collected in a completely label-free, noninvasive manner, collagen is colored green while ovarian metastatic cell clusters are presented in red (Photo courtesy of Tufts University).
Image: Scientists combined multiphoton microscopy with automated image and statistical analysis algorithms to distinguish between healthy and diseased tissue. In this image, collected in a completely label-free, noninvasive manner, collagen is colored green while ovarian metastatic cell clusters are presented in red (Photo courtesy of Tufts University).
For cancer patients the presence of metastases dictates the staging assessment, which in turn defines the appropriate treatment path selected. For gynecological malignancies, like ovarian carcinoma, it is of immense importance to differentiate between localized and metastatic disease status as that drastically affects management.

For in situ, real time diagnosis, novel imaging modalities that offer metabolic and structural information at the cellular and subcellular level can be of great help, especially since these modalities are being progressively incorporated in probes and micro-endoscopes that allow intra-vital access to organs that lie deeper in the body.

Biomedical scientists at Tufts University (Medford, MA, USA) and their colleagues collected samples from eight patients who underwent open laparotomy as part of routine medical care. Post completion of all intra-abdominal procedures of the operation, eight biopsies of healthy parietal peritoneum and if present of four peritoneal metastases were collected from each patient. All lesions were evaluated by a pathologist using standard hematoxylin and eosin histology.

The tissues were imaged employing a multiphoton laser scanning microscope to generate intrinsic fluorescence and second harmonic generation (SHG) images at 755 nm and 900 nm excitation respectively with signal emission collected at 460 ± 20 and 525 ± 25 nm. Laser light was focused on the sample using a 25x objective (0.9 NA / water-immersion), and neutral density filters were employed to achieve a power of 25–35 mW. At least two to three random fields per tissue were evaluated, reaching a total of 30 and 11 images for the healthy and metastatic biopsy tissue groups, respectively (512 × 512 pixels; 600-micron field of view; resolution of 1.17 microns per pixel). Imaging was focused within a depth of ∼20-100 microns from the mesothelial surface of the tissues.

The team found that healthy tissues displayed large variations in contrast and correlation features as a function of distance, corresponding to repetitive, increased local intensity fluctuations. Metastatic tissue images exhibited decreased contrast and correlation related values, representing more uniform intensity patterns and smaller fibers, indicating the destruction of the healthy stroma by the cancerous infiltration. Analyzing 41 images acquired from the biopsies, the technique correctly classified 40 out of 41 images (an accuracy of 97.5%). A total of 11 samples were correctly classified as metastatic (100% sensitivity) and 29 of 30 were correctly classified as healthy (96.6% specificity).

Dimitra Pouli, MD, PhD, a Pathology Resident and co-author of the study, said, “The method utilized in this work identifies in a completely label-free manner cellular and tissue features at the microscopic level, essentially acting like a biopsy without a knife,” The study was published in the August 2019 issue of the journal Biomedical Optics Express.

Related Links:
Tufts University

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Immunology

view channel
Image: The simple blood marker can predict which lymphoma patients will benefit most from CAR T-cell therapy (Photo courtesy of Shutterstock)

Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy

CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read more
GLOBE SCIENTIFIC, LLC