Commercial System Effective for Cefiderocol Susceptibility Testing
By LabMedica International staff writers Posted on 11 Jul 2019 |

Image: The Sensititre Complete Automated Antibiotic Susceptibility Testing (AST) System performs all susceptibility testing on a single platform utilizing the superior sensitivity of true MIC results (Photo courtesy of Thermo Fisher Scientific).
The novel formulation of the cephalosporin antibiotic makes it very effective against gram-negative non-fastidious bacteria that are otherwise highly resistant to antibiotics, including carbapenem-resistant strains of Enterobacteriaceae and non-fermenters.
In microbiology, the minimum inhibitory concentration (MIC) is the lowest concentration of a chemical, usually a drug, which prevents visible growth of bacterium. MIC depends on the microorganism, the affected human being (in vivo only), and the antibiotic itself.
An international team of scientists working with Thermo Fisher Scientific (Cleveland, Ohio, USA) conducted a study that involved 374 recent clinical isolates, which included Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter spp., Serratia marcescens, Pseudomonas aeruginosa, and Acinetobacter baumannii. One of the four study sites additionally used 147 Centers for Disease Control and Prevention challenge isolates. Three sites also used 11 reproducibility isolates, with three of these isolates being tested each day for three days. Finally, all four sites tested two quality control strains: E. coli ATCC 25922 and P. aeruginosa ATCC 27853.
The team tested a commercially prepared dried minimum inhibitory concentration (MIC) susceptibility system, the Thermo Fisher Scientific Sensititre, and demonstrated an equivalent level of performance compared with the Clinical & Laboratory Standards Institute (CLSI) M07/M100 and the International Organization for Standardization (ISO) 20776-1 reference broth microdilution (BMD) method when testing cefiderocol against Gram-negative non-fastidious organisms.
Overall agreement for the reproducibility (± 1 log2 dilution) concerning the most frequent (or modal) MIC value using automated and manual reading was 95.0% and 95.3%, respectively. The lowest agreement between the two test methods was 90.0% for Enterobacter spp., followed by 92.0% for Citrobacter spp. The strongest agreement was for P. aeruginosa (97.5%). The agreement among the four testing sites was high, at about 95%.
Thomas C. Lewis, BSc, a Research and Development Project Leader at Thermo Fisher Scientific, said, “The high level of agreement obtained by the Sensititre susceptibility system and the CLSI/ISO BMD method suggests that this is an acceptable method for susceptibility testing of cefiderocol. The results are available within 18 to 24 hours, versus several days for the broth. Plus, the testing materials can be kept on the laboratory shelf at room temperature before being used, which is a lot more convenient.” The study was presented at the Annual meeting of the American Society of Microbiology, held June 7-11, 2019, in Atlanta, GA, USA.
Related Links:
Thermo Fisher Scientific
In microbiology, the minimum inhibitory concentration (MIC) is the lowest concentration of a chemical, usually a drug, which prevents visible growth of bacterium. MIC depends on the microorganism, the affected human being (in vivo only), and the antibiotic itself.
An international team of scientists working with Thermo Fisher Scientific (Cleveland, Ohio, USA) conducted a study that involved 374 recent clinical isolates, which included Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter spp., Serratia marcescens, Pseudomonas aeruginosa, and Acinetobacter baumannii. One of the four study sites additionally used 147 Centers for Disease Control and Prevention challenge isolates. Three sites also used 11 reproducibility isolates, with three of these isolates being tested each day for three days. Finally, all four sites tested two quality control strains: E. coli ATCC 25922 and P. aeruginosa ATCC 27853.
The team tested a commercially prepared dried minimum inhibitory concentration (MIC) susceptibility system, the Thermo Fisher Scientific Sensititre, and demonstrated an equivalent level of performance compared with the Clinical & Laboratory Standards Institute (CLSI) M07/M100 and the International Organization for Standardization (ISO) 20776-1 reference broth microdilution (BMD) method when testing cefiderocol against Gram-negative non-fastidious organisms.
Overall agreement for the reproducibility (± 1 log2 dilution) concerning the most frequent (or modal) MIC value using automated and manual reading was 95.0% and 95.3%, respectively. The lowest agreement between the two test methods was 90.0% for Enterobacter spp., followed by 92.0% for Citrobacter spp. The strongest agreement was for P. aeruginosa (97.5%). The agreement among the four testing sites was high, at about 95%.
Thomas C. Lewis, BSc, a Research and Development Project Leader at Thermo Fisher Scientific, said, “The high level of agreement obtained by the Sensititre susceptibility system and the CLSI/ISO BMD method suggests that this is an acceptable method for susceptibility testing of cefiderocol. The results are available within 18 to 24 hours, versus several days for the broth. Plus, the testing materials can be kept on the laboratory shelf at room temperature before being used, which is a lot more convenient.” The study was presented at the Annual meeting of the American Society of Microbiology, held June 7-11, 2019, in Atlanta, GA, USA.
Related Links:
Thermo Fisher Scientific
Latest Microbiology News
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
- Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
- POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
- Rapid Diagnostic Test Slashes Sepsis Mortality by 39%
- Blood Culture Assay Enhances Diagnostic Stewardship Through Targeted Panel Selection
- Real-Time Genome Sequencing Detects Dangerous Superbug Causing Hospital Infections
- Diagnostic Test Accurately Detects Colorectal Cancer by Identifying Microbial Signature in Gut Bacteria
- Rapid Bedside Test Predicts Sepsis with Over 90% Accuracy
- New Blood Test Detects Up to Five Infectious Diseases at POC
- Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
- New Test Diagnoses Bacterial Meningitis Quickly and Accurately
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreMolecular Diagnostics
view channel
New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
Myelodysplastic syndrome (MDS) is a condition typically associated with aging, where blood stem cells fail to develop into fully functional blood cells. Early and accurate diagnosis is vital, as MDS can... Read more
Blood Test Detects Preeclampsia Risk Months Before Symptoms Appear
Preeclampsia, a pregnancy-related complication characterized by elevated blood pressure and organ dysfunction, remains a major contributor to maternal and infant health issues globally. Existing screening... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read morePathology
view channel
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read more
Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
Saliva is one of the most accessible biological fluids, yet it remains underutilized in clinical practice. While saliva samples are used to perform genetic tests to determine, for example, paternity, the... Read moreTechnology
view channel
New POC Biosensing Technology Improves Detection of Molecular Biomarkers
Traditional diagnostic procedures in medicine typically involve sending a patient’s blood or tissue samples to clinical laboratories, where trained scientists perform testing and data interpretation.... Read more
Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
Data plays a key role in the transformation of today’s digital laboratories, acting both as a key challenge and a catalyst for innovation, as revealed by a survey of over 150 scientists.... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more