MicroRNA Pair Serves as Biomarkers for Rapid Sepsis Diagnosis
|
By LabMedica International staff writers Posted on 16 Jul 2018 |

Image: The structure of a lipopolysaccharide (Photo courtesy of Wikimedia Commons).
Two microRNAs that could be the basis of a test to help physicians classify patients into those with organ failure who are at high risk of sepsis and death and those patients with milder infections have been identified.
MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.
Sepsis is a dysregulated systemic immune response to disseminated infection that has a high mortality rate. In some patients, sepsis results in a period of immunosuppression (known as immunoparalysis) characterized by reduced inflammatory cytokine output, increased secondary infection, and an increased risk of organ failure and mortality.
Prolonged exposure to microbial products such as lipopolysaccharide can induce a form of innate immune memory, known as lipopolysaccharide tolerance, which blunts subsequent responses to unrelated pathogens. Lipopolysaccharide tolerance recapitulates several key features of sepsis-associated immunosuppression and can be used as a model for studying this phenomenon.
In this regard, investigators at the Columbia University Irving Medical Center (New York, NY, USA) performed a screen for tolerance-associated microRNAs and identified miR-221 and miR-222 as regulators of the functional reprogramming of macrophages during the formation of lipopolysaccharide tolerance. Prolonged stimulation with lipopolysaccharide in mice led to increased expression of miR-221 and miR-222.
While clinical trials will be needed to validate the usefulness of testing patients for these microRNAs as a quick guide to prognosis and treatment, a small study revealed that among 30 hospitalized patients, those with evidence of organ failure exhibited higher levels of miR-221 and miR-222 in their blood samples. In septic patients, those with elevated miR-221 and miR-222 also exhibited evidence of immunosuppression.
“The best treatment for sepsis starts with rapid detection. Our results suggest that specific molecules called microRNAs may be potential biomarkers of poor prognosis, indicating the need for more aggressive treatment options,” said senior author Dr.Sankar Ghosh, professor of microbiology and immunology at Columbia University Irving Medical Center.
Related Links:
Columbia University Irving Medical Center
MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.
Sepsis is a dysregulated systemic immune response to disseminated infection that has a high mortality rate. In some patients, sepsis results in a period of immunosuppression (known as immunoparalysis) characterized by reduced inflammatory cytokine output, increased secondary infection, and an increased risk of organ failure and mortality.
Prolonged exposure to microbial products such as lipopolysaccharide can induce a form of innate immune memory, known as lipopolysaccharide tolerance, which blunts subsequent responses to unrelated pathogens. Lipopolysaccharide tolerance recapitulates several key features of sepsis-associated immunosuppression and can be used as a model for studying this phenomenon.
In this regard, investigators at the Columbia University Irving Medical Center (New York, NY, USA) performed a screen for tolerance-associated microRNAs and identified miR-221 and miR-222 as regulators of the functional reprogramming of macrophages during the formation of lipopolysaccharide tolerance. Prolonged stimulation with lipopolysaccharide in mice led to increased expression of miR-221 and miR-222.
While clinical trials will be needed to validate the usefulness of testing patients for these microRNAs as a quick guide to prognosis and treatment, a small study revealed that among 30 hospitalized patients, those with evidence of organ failure exhibited higher levels of miR-221 and miR-222 in their blood samples. In septic patients, those with elevated miR-221 and miR-222 also exhibited evidence of immunosuppression.
“The best treatment for sepsis starts with rapid detection. Our results suggest that specific molecules called microRNAs may be potential biomarkers of poor prognosis, indicating the need for more aggressive treatment options,” said senior author Dr.Sankar Ghosh, professor of microbiology and immunology at Columbia University Irving Medical Center.
Related Links:
Columbia University Irving Medical Center
Latest Molecular Diagnostics News
- Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
- Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
- Four-Gene Blood Test Rules Out Bacterial Lung Infection
- New PCR Test Improves Diagnostic Accuracy of Bacterial Vaginosis and Candida Vaginitis
- New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
- World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
- Blood Test to Help Low-Risk Gastric Cancer Patients Avoid Unnecessary Surgery
- First-Of-Its-Kind Automated System Speeds Myeloma Diagnosis
- Blood Protein Profiles Predict Mortality Risk for Earlier Medical Intervention
- First Of Its Kind Blood Test Detects Gastric Cancer in Asymptomatic Patients
- Portable Molecular Test Detects STIs at POC in 15 Minutes
- Benchtop Analyzer Runs Chemistries, Immunoassays and Hematology in Single Device
- POC Bordetella Test Delivers PCR-Accurate Results in 15 Minutes
- Pinprick Blood Test Could Detect Disease 10 Years Before Symptoms Appear
- Refined C-Reactive Protein Cutoffs Help Assess Sepsis Risk in Preterm Babies
- Blood Test Accurately Detects Brain Amyloid Pathology in Symptomatic Patients
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channelAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read more
AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Complex digital biopsy images that typically take an expert pathologist up to 20 minutes to assess can now be analyzed in about one minute using a new artificial intelligence (AI) tool. The technology... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








