Liquid Biopsy Could Identify Advanced Breast Cancer Patients
|
By LabMedica International staff writers Posted on 09 Aug 2017 |

Image: The Ion Ampliseq library preparation kits (Photo courtesy of Thermo Fisher Scientific).
A novel blood test has been developed that measures genetic changes in circulating cancer DNA that could help identify patients with metastatic breast cancer who could benefit from a change of treatment.
Somatic mutation profiling of breast tumor tissues has identified a number of distinct breast cancer molecular subtypes characterized by diverse somatic mutations, including single nucleotide variants (SNVs) and copy number alterations (CNAs).
Scientists at the University of Leicester (Leicester, UK) recruited 42 patients with radiological-confirmed metastatic breast cancer (MBC) and nine women attending for breast screening mammography as age-matched controls. Blood samples were collected and the plasma processed using the Circulating Nucleic Acids kit.
The team designed a custom 158-amplicon panel (size range 125–175 bp) across 16 genes based on previous studies and publically available databases. Library preparation and Personal Genome Machine (PGM) sequencing were performed using the Ion Ampliseq library preparation kit. Droplet digital polymerase chain reaction (ddPCR) was used to validate tumor protein p53 (TP53), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and estrogen receptor 1 (ESR1) mutations.
The scientists identified no mutations in cell free DNA (cfDNA) of healthy controls, whereas exactly half the patients with metastatic breast cancer had at least one mutation or amplification in cfDNA (mean 2, range 1–6) across a total of 13 genes. Longitudinal follow up showed dynamic changes to mutations and gene amplification in cfDNA indicating clonal and subclonal response to treatment that was more dynamic than cancer antigen 15-3 (CA15-3).
At the time of blood sampling disease progression was occurring in seven patients with erb-b2 receptor tyrosine kinase 2 (ERBB2) gene amplification in their cfDNA and three of these patients were human epidermal growth factor receptor 2 (HER2) negative at diagnosis, suggesting clonal evolution to a more aggressive phenotype. Six of the women with hormone-driven cancers had mutations in the ESR1 gene, which has been linked to resistance to anti-hormone treatments.
David Guttery, PhD, a leading author of the study, said, “We have developed a novel blood test that can simultaneously detect somatic mutations and copy number alterations that are integral in driving the growth of breast cancer. By analyzing blood plasma to measure for cancer-specific changes to key breast cancer genes, including the HER2 and estrogen receptor genes, we hope this test could help doctors and patients choose the best treatment at the best time.” The study was described by Professor Jacqui A. Shaw, PhD, in an oral presentation at the Frank May Prize Lecture on June 26, 2017, at the University of Leicester.
Related Links:
University of Leicester
Somatic mutation profiling of breast tumor tissues has identified a number of distinct breast cancer molecular subtypes characterized by diverse somatic mutations, including single nucleotide variants (SNVs) and copy number alterations (CNAs).
Scientists at the University of Leicester (Leicester, UK) recruited 42 patients with radiological-confirmed metastatic breast cancer (MBC) and nine women attending for breast screening mammography as age-matched controls. Blood samples were collected and the plasma processed using the Circulating Nucleic Acids kit.
The team designed a custom 158-amplicon panel (size range 125–175 bp) across 16 genes based on previous studies and publically available databases. Library preparation and Personal Genome Machine (PGM) sequencing were performed using the Ion Ampliseq library preparation kit. Droplet digital polymerase chain reaction (ddPCR) was used to validate tumor protein p53 (TP53), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and estrogen receptor 1 (ESR1) mutations.
The scientists identified no mutations in cell free DNA (cfDNA) of healthy controls, whereas exactly half the patients with metastatic breast cancer had at least one mutation or amplification in cfDNA (mean 2, range 1–6) across a total of 13 genes. Longitudinal follow up showed dynamic changes to mutations and gene amplification in cfDNA indicating clonal and subclonal response to treatment that was more dynamic than cancer antigen 15-3 (CA15-3).
At the time of blood sampling disease progression was occurring in seven patients with erb-b2 receptor tyrosine kinase 2 (ERBB2) gene amplification in their cfDNA and three of these patients were human epidermal growth factor receptor 2 (HER2) negative at diagnosis, suggesting clonal evolution to a more aggressive phenotype. Six of the women with hormone-driven cancers had mutations in the ESR1 gene, which has been linked to resistance to anti-hormone treatments.
David Guttery, PhD, a leading author of the study, said, “We have developed a novel blood test that can simultaneously detect somatic mutations and copy number alterations that are integral in driving the growth of breast cancer. By analyzing blood plasma to measure for cancer-specific changes to key breast cancer genes, including the HER2 and estrogen receptor genes, we hope this test could help doctors and patients choose the best treatment at the best time.” The study was described by Professor Jacqui A. Shaw, PhD, in an oral presentation at the Frank May Prize Lecture on June 26, 2017, at the University of Leicester.
Related Links:
University of Leicester
Latest Pathology News
- Single-Cell Profiling Technique Could Guide Early Cancer Detection
- Intraoperative Tumor Histology to Improve Cancer Surgeries
- Rapid Stool Test Could Help Pinpoint IBD Diagnosis
- AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
- Deep Learning–Based Method Improves Cancer Diagnosis
- ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
- New Age-Based Blood Test Thresholds to Catch Ovarian Cancer Earlier
- Genetics and AI Improve Diagnosis of Aortic Stenosis
- AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
- Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
- Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
- Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
- Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
Channels
Clinical Chemistry
view channel
Study Compares Analytical Performance of Quantitative Hepatitis B Surface Antigen Assays
Hepatitis B virus (HBV) continues to pose a significant global health challenge, with chronic infection affecting hundreds of millions of people despite effective vaccines and antiviral therapies.... Read more
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read moreHematology
view channel
AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
Alpha thalassemia affects millions of people worldwide and is especially common in regions such as Southeast Asia, where carrier rates can reach extremely high levels. While the condition can have significant... Read more
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
Single-Cell Profiling Technique Could Guide Early Cancer Detection
Cancer often develops silently over many years, as individual cells acquire mutations that give them a growth advantage long before a tumor forms. These pre-malignant cells can exist alongside normal cells... Read more
Intraoperative Tumor Histology to Improve Cancer Surgeries
Surgical removal of cancer remains the first-line treatment for many tumors, but ensuring that all cancerous tissue is removed while preserving healthy tissue is a major challenge. Surgeons currently rely... Read more
Rapid Stool Test Could Help Pinpoint IBD Diagnosis
Inflammatory bowel disease (IBD) is a chronic condition in which the immune system mistakenly attacks the digestive tract, causing persistent gut inflammation. Diagnosis and disease monitoring often depend... Read more
AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







