Gene Mutation Causes Rare Immune Disorder
|
By LabMedica International staff writers Posted on 12 Jul 2017 |

Image: This light microscope image shows the gut tissue of a child with CHAPLE disease. The large white areas in the bottom right corner are enlarged lymphatic vessels, which can contribute to intestinal distress (Photo courtesy of the US National Institute of Allergy and Infectious Diseases).
A genetic cause and potential treatment strategy for a rare immune disorder called CHAPLE disease has been discovered and children with the condition can experience severe gastrointestinal distress and deep vein blood clots.
Genetic studies have contributed to the understanding of gastrointestinal diseases, associating at least 64 genes with early-onset or very-early-onset inflammatory bowel disease. Deleterious gene variants affect the intestinal epithelial barrier, phagocytosis processes, immune regulation, and inflammation.
A large team of international scientists led by those at the US National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) enrolled 10 patients with CHAPLE disease that were based in Turkey and one who was based in the Netherlands, along with their healthy parents and siblings when available. The 11 patients were from eight families, all of whom were of Moroccan, Syrian, or Turkish ancestry. The ages of the patients ranged from three to 23 years as of February 2017. CHAPLE disease is a form of primary intestinal lymphangiectasia (PIL), also known as Waldmann’s disease.
Genomic DNA (gDNA) was obtained from probands and family members by isolation and purification from peripheral blood mononuclear cells (PBMCs) and submitted for Whole Exome Sequencing (WES) or targeting sequencing of the CD55 gene coupled with massively parallel sequencing by HiSeq Sequencing System. The scientists used a variety of techniques including flow cytometry, quantitative real-time polymerase reaction, Western blotting and T cell stimulation and cytokine secretion analysis.
The team found homozygous loss-of-function mutations in the gene encoding CD55 (decay-accelerating factor), which lead to loss of protein expression. Patients’ T lymphocytes showed increased complement activation causing surface deposition of complement and the generation of soluble C5a. Costimulatory function and cytokine modulation by CD55 were defective. Genetic reconstitution of CD55 or treatment with a complement-inhibitory therapeutic antibody reversed abnormal complement activation.
The team found that in CHAPLE disease, uninhibited complement resulting from a lack of CD55 protein damaged blood and lymph vessels along the lower digestive tract, leading to the loss of protective immune proteins and blood cells. In many patients, this process caused a range of symptoms, such as abdominal pain, bloody diarrhea, vomiting, problems absorbing nutrients, slow growth, swelling in the legs, recurrent lung infections, and blood clots.
The authors concluded that CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy (the CHAPLE syndrome) is caused by abnormal complement activation due to biallelic loss-of-function mutations in the CD55 gene. The study was published on June 28, 2017, in the New England Journal of Medicine.
Related Links:
US National Institute of Allergy and Infectious Diseases
Genetic studies have contributed to the understanding of gastrointestinal diseases, associating at least 64 genes with early-onset or very-early-onset inflammatory bowel disease. Deleterious gene variants affect the intestinal epithelial barrier, phagocytosis processes, immune regulation, and inflammation.
A large team of international scientists led by those at the US National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) enrolled 10 patients with CHAPLE disease that were based in Turkey and one who was based in the Netherlands, along with their healthy parents and siblings when available. The 11 patients were from eight families, all of whom were of Moroccan, Syrian, or Turkish ancestry. The ages of the patients ranged from three to 23 years as of February 2017. CHAPLE disease is a form of primary intestinal lymphangiectasia (PIL), also known as Waldmann’s disease.
Genomic DNA (gDNA) was obtained from probands and family members by isolation and purification from peripheral blood mononuclear cells (PBMCs) and submitted for Whole Exome Sequencing (WES) or targeting sequencing of the CD55 gene coupled with massively parallel sequencing by HiSeq Sequencing System. The scientists used a variety of techniques including flow cytometry, quantitative real-time polymerase reaction, Western blotting and T cell stimulation and cytokine secretion analysis.
The team found homozygous loss-of-function mutations in the gene encoding CD55 (decay-accelerating factor), which lead to loss of protein expression. Patients’ T lymphocytes showed increased complement activation causing surface deposition of complement and the generation of soluble C5a. Costimulatory function and cytokine modulation by CD55 were defective. Genetic reconstitution of CD55 or treatment with a complement-inhibitory therapeutic antibody reversed abnormal complement activation.
The team found that in CHAPLE disease, uninhibited complement resulting from a lack of CD55 protein damaged blood and lymph vessels along the lower digestive tract, leading to the loss of protective immune proteins and blood cells. In many patients, this process caused a range of symptoms, such as abdominal pain, bloody diarrhea, vomiting, problems absorbing nutrients, slow growth, swelling in the legs, recurrent lung infections, and blood clots.
The authors concluded that CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy (the CHAPLE syndrome) is caused by abnormal complement activation due to biallelic loss-of-function mutations in the CD55 gene. The study was published on June 28, 2017, in the New England Journal of Medicine.
Related Links:
US National Institute of Allergy and Infectious Diseases
Latest Molecular Diagnostics News
- Endometriosis Blood Test Could Replace Invasive Laparoscopic Diagnosis
- World's First NGS-Based Diagnostic Platform Fully Automates Sample-To-Result Process Within Single Device
- Rapid Diagnostic Breakthrough Simultaneously Detects Resistance and Virulence in Klebsiella Pneumoniae
- DNA Detection Platform Enables Real-Time Molecular Detection
- STI Molecular Test Delivers Rapid POC Results for Treatment Guidance
- Blood Biomarker Improves Early Brain Injury Prognosis After Cardiac Arrest
- Biomarkers Could Identify Patients at High Risk of Severe AKI After Major Surgery
- CLIA Test Identifies Head and Neck Cancer Recurrence from Post-Surgical Lymphatic Fluid
- New 15-Minute Hepatitis C Test Paves Way for Same-Day Treatment
- Ovarian Cancer Assay Outperforms Traditional Tests in Early Detection
- Ultrasensitive Method Detects Low-Frequency Cancer Mutations
- Blood Test Enables Non-Invasive Endometriosis Detection
- New Blood Biomarkers Help Diagnose Pregnancy-Linked Liver Complication
- Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
- Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
- Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
Channels
Clinical Chemistry
view channel
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read more
POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
Pseudomonas aeruginosa is a major cause of hospital-acquired and ventilator-associated pneumonia, particularly in lung transplant recipients and patients with structural lung disease. Its ability to form... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read more
Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
Glioblastoma is one of the most aggressive and fatal brain cancers, with most patients surviving less than two years after diagnosis. Treatment is particularly challenging because the tumor infiltrates... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







