We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mobile Phone-Based Microscopes Diagnose Intestinal Parasites

By LabMedica International staff writers
Posted on 13 Jul 2016
Print article
Image: Handheld- and mobile phone-based microscopes: A) The Newton Nm1-600 XY portable field microscope B) The reversed-lens CellScope attached to an iPhone 5s (Photo courtesy of University Health Network).
Image: Handheld- and mobile phone-based microscopes: A) The Newton Nm1-600 XY portable field microscope B) The reversed-lens CellScope attached to an iPhone 5s (Photo courtesy of University Health Network).
Handheld, mobile phone-based microscopes can be used in developing countries after minimal training of community laboratory technicians to diagnose intestinal parasites quickly and accurately.

Intestinal worms affect almost two billion people world-wide, predominantly in areas with poor sanitation and unsafe water and in children, these parasites may lead to malnutrition, stunted growth and development and can lead to chronic disability, with serious health and economic consequences.

An international team of scientists led by those at the University of Toronto (ON, Canada) trained local laboratory technicians to operate the two handheld microscopes. In total, the technicians examined stool and urine samples from 226 individuals for the detection of parasites. The accuracy of all slides was evaluated by all microscopes: the two handheld devices, as well as a conventional, “gold standard” microscope.

The two portable handheld microscopes:tested were a commercial Newton Nm1 microscope (Newton Microscopes, Bedford, UK) and a mobile phone-based CellScope (CellScope Inc, San Francisco, CA, USA) which is essentially a smartphone with a special custom-fitted lens attached over the camera and light source, developed by engineers, to detect intestinal parasites. Slides were first evaluated using an Olympus CX21 microscope (Volketswil, Switzerland) as the gold standard.

The scientists reported that the two handheld microscopes were very good at ruling in infections, and the Newton portable microscope was able to detect even very low-burden infections. The CellScope missed some low-burden infections, however newer iterations of this device are currently being tested to increase its sensitivity.

Isaac I. Bogoch, MD, the lead investigator said, “It was heart-warming to see how well and easily these portable, handheld field microscopes were adopted and used in a rural setting. This will help us map out the areas of greatest need. Novel diagnostic approaches for common parasitic infections could have a profound impact on care of patients, as well as on public health approaches to screening in resource-poor areas.” The study was published on June 27, 2016, in the journal PLOS Neglected Tropical Diseases.

Related Links:
University of Toronto
Newton Microscopes
CellScope
Olympus
New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)

Advanced Liquid Biopsy Technology Detects Cancer Earlier Than Conventional Methods

Liquid biopsy technology has yet to fully deliver on its significant potential. Traditional methods have focused on a narrow range of cancer-associated mutations that are often present in such low quantities... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
LGC Clinical Diagnostics