We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mobile Phone-Based Microscopes Diagnose Intestinal Parasites

By LabMedica International staff writers
Posted on 13 Jul 2016
Image: Handheld- and mobile phone-based microscopes: A) The Newton Nm1-600 XY portable field microscope B) The reversed-lens CellScope attached to an iPhone 5s (Photo courtesy of University Health Network).
Image: Handheld- and mobile phone-based microscopes: A) The Newton Nm1-600 XY portable field microscope B) The reversed-lens CellScope attached to an iPhone 5s (Photo courtesy of University Health Network).
Handheld, mobile phone-based microscopes can be used in developing countries after minimal training of community laboratory technicians to diagnose intestinal parasites quickly and accurately.

Intestinal worms affect almost two billion people world-wide, predominantly in areas with poor sanitation and unsafe water and in children, these parasites may lead to malnutrition, stunted growth and development and can lead to chronic disability, with serious health and economic consequences.

An international team of scientists led by those at the University of Toronto (ON, Canada) trained local laboratory technicians to operate the two handheld microscopes. In total, the technicians examined stool and urine samples from 226 individuals for the detection of parasites. The accuracy of all slides was evaluated by all microscopes: the two handheld devices, as well as a conventional, “gold standard” microscope.

The two portable handheld microscopes:tested were a commercial Newton Nm1 microscope (Newton Microscopes, Bedford, UK) and a mobile phone-based CellScope (CellScope Inc, San Francisco, CA, USA) which is essentially a smartphone with a special custom-fitted lens attached over the camera and light source, developed by engineers, to detect intestinal parasites. Slides were first evaluated using an Olympus CX21 microscope (Volketswil, Switzerland) as the gold standard.

The scientists reported that the two handheld microscopes were very good at ruling in infections, and the Newton portable microscope was able to detect even very low-burden infections. The CellScope missed some low-burden infections, however newer iterations of this device are currently being tested to increase its sensitivity.

Isaac I. Bogoch, MD, the lead investigator said, “It was heart-warming to see how well and easily these portable, handheld field microscopes were adopted and used in a rural setting. This will help us map out the areas of greatest need. Novel diagnostic approaches for common parasitic infections could have a profound impact on care of patients, as well as on public health approaches to screening in resource-poor areas.” The study was published on June 27, 2016, in the journal PLOS Neglected Tropical Diseases.

Related Links:
University of Toronto
Newton Microscopes
CellScope
Olympus
Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gel Cards
DG Gel Cards
Silver Member
PCR Plates
Diamond Shell PCR Plates

Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more