Levels of Bim Protein in T-cells Reflect Success of Anti–PD-1 Cancer Therapy
By LabMedica International staff writers Posted on 16 May 2016 |

Image: A structural model of the Bim protein (Photo courtesy of Wikimedia Commons).
Measurement of levels of Bim (BCL-2-interacting mediator of cell death) protein in circulating T-cells of cancer patients may provide a less invasive strategy to predict and monitor responses to anti–PD-1 therapy.
Immune checkpoint therapy with PD-1 (Programmed cell death protein 1) blockade has emerged as an effective therapy for many advanced cancers; however, only a small fraction of patients achieve long-term responses. There is no validated blood-based means of predicting the response to PD-1 blockade.
PD-1, functioning as an immune checkpoint, plays an important role in down regulating the immune system by preventing the activation of T-cells, which in turn reduces autoimmunity and promotes self-tolerance. The inhibitory effect of PD-1 is accomplished through a dual mechanism of promoting apoptosis (programmed cell death) in antigen specific T-cells in lymph nodes while simultaneously reducing apoptosis in regulatory T cells (suppressor T cells).
Investigators at the Mayo Clinic (Rochester, MN, USA) had previously cloned PD-L1 (Programmed death-ligand 1) and found that tumor-associated PD-L1 mediated tumor immune evasion. Since then the group has been working on dissecting the molecular mechanisms of the PD-L1/PD-1 pathway in T-cell dysfunction.
They recently reported that they had identified the protein Bim as a downstream signaling molecule of the PD-1 pathway and that its detection in T-cells was significantly associated with expression of PD-1 and effector T-cell markers. Thus, high levels of Bim in circulating tumor-reactive T-cells were prognostic of poor survival in patients with metastatic melanoma who did not receive anti–PD-1 therapy and were also predictive of clinical benefit in patients with metastatic melanoma who received anti–PD-1 therapy in the form of the humanized monoclonal antibody drug pembrolizumab. This circulating tumor-reactive T-cell population significantly decreased after successful anti–PD-1 therapy.
"Our previous research demonstrated that Bim is a downstream signaling molecule in the PD-1 signaling pathway, and that levels of Bim reflect the degree of PD-1 interaction with its ligand PD-L1," said senior author Dr. Haidong Dong, associate professor of immunology at the Mayo Clinic. "We hypothesized that the increased frequency of CD8+PD-1+Bim+T cells in patients who respond to immunotherapy reflects an increased number of target T-cells for PD-1 blockade with pembrolizumab, which may explain the positive clinical outcomes in these patients."
The study was published in the May 5, 2016, online edition of the journal JCI Insight.
Related Links:
Mayo Clinic
Immune checkpoint therapy with PD-1 (Programmed cell death protein 1) blockade has emerged as an effective therapy for many advanced cancers; however, only a small fraction of patients achieve long-term responses. There is no validated blood-based means of predicting the response to PD-1 blockade.
PD-1, functioning as an immune checkpoint, plays an important role in down regulating the immune system by preventing the activation of T-cells, which in turn reduces autoimmunity and promotes self-tolerance. The inhibitory effect of PD-1 is accomplished through a dual mechanism of promoting apoptosis (programmed cell death) in antigen specific T-cells in lymph nodes while simultaneously reducing apoptosis in regulatory T cells (suppressor T cells).
Investigators at the Mayo Clinic (Rochester, MN, USA) had previously cloned PD-L1 (Programmed death-ligand 1) and found that tumor-associated PD-L1 mediated tumor immune evasion. Since then the group has been working on dissecting the molecular mechanisms of the PD-L1/PD-1 pathway in T-cell dysfunction.
They recently reported that they had identified the protein Bim as a downstream signaling molecule of the PD-1 pathway and that its detection in T-cells was significantly associated with expression of PD-1 and effector T-cell markers. Thus, high levels of Bim in circulating tumor-reactive T-cells were prognostic of poor survival in patients with metastatic melanoma who did not receive anti–PD-1 therapy and were also predictive of clinical benefit in patients with metastatic melanoma who received anti–PD-1 therapy in the form of the humanized monoclonal antibody drug pembrolizumab. This circulating tumor-reactive T-cell population significantly decreased after successful anti–PD-1 therapy.
"Our previous research demonstrated that Bim is a downstream signaling molecule in the PD-1 signaling pathway, and that levels of Bim reflect the degree of PD-1 interaction with its ligand PD-L1," said senior author Dr. Haidong Dong, associate professor of immunology at the Mayo Clinic. "We hypothesized that the increased frequency of CD8+PD-1+Bim+T cells in patients who respond to immunotherapy reflects an increased number of target T-cells for PD-1 blockade with pembrolizumab, which may explain the positive clinical outcomes in these patients."
The study was published in the May 5, 2016, online edition of the journal JCI Insight.
Related Links:
Mayo Clinic
Latest Pathology News
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
- New Software Tool Improves Analysis of Complex Spatial Data from Tissues
- AI Tool Helps Surgeons Distinguish Aggressive Glioblastoma from Other Brain Cancers in Real-Time
- New Tool Could Revolutionize Acute Leukemia Diagnosis
- New Microscope Promises to Speed Up Medical Diagnostics
- ESR Testing Breakthrough Extends Blood Sample Stability from 4 to 28 Hours
- Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
- Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
- Mobile-Compatible AI-Powered System to Revolutionize Malaria Diagnosis
- Compact AI-Powered Microscope Enables Rapid Cost-Effective Cancer Scoring
- New Method Enables Precise Detection of Nanoplastics in Body
- AI-Powered Tool Improves Cancer Tissue Analysis
- AI Platform Uses 3D Visualization to Reveal Disease Biomarkers in Multiomics Data
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Simple Blood Test Could Reveal Kidney Disease Earlier
Kidney disease remains one of the leading causes of premature mortality, affecting 13% of the global population and nearly one-third of intensive care patients who develop acute kidney injury (AKI).... Read more
Revolutionary Blood Test Accurately Diagnoses Chronic Fatigue Syndrome
Myalgic Encephalomyelitis, also known as Chronic Fatigue Syndrome (ME/CFS), is a long-term debilitating illness that affects millions worldwide, including over 400,000 people in the UK. The condition causes... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read moreTechnology
view channel
AI Algorithm Assesses Progressive Decline in Kidney Function
Chronic kidney disease (CKD) affects more than 700 million people worldwide and remains a major global health challenge. The condition often progresses silently, and many patients remain undiagnosed until... Read more
Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
Influenza is one of the most dangerous infectious diseases worldwide, claiming around half a million lives each year. What makes it particularly insidious is that flu viruses are contagious even before... Read more
3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
Early-stage disease diagnosis depends on the ability to detect biomarkers with exceptional sensitivity and precision. However, traditional biosensing technologies struggle with achieving this at the micro-scale,... Read moreIndustry
view channel
Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders
Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes
Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
GSI Group Acquires Blood Processing Equipment Manufacturer GenesisBPS
Blood processing and storage are vital to healthcare and clinical practice, ensuring safe transfusions and cellular therapies. However, hospitals and laboratories worldwide face challenges in maintaining... Read more