New Assay Improves Detection Of Deadly Prion Diseases
By LabMedica International staff writers Posted on 28 Apr 2016 |

Image: The FLUOstar Omega microplate reader (Photo courtesy of BMG Labtech).
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are a family of rare progressive, neurodegenerative illnesses that affect both humans and animals and TSE surveillance is important for public health and food safety.
Because TSEs have the potential of crossing from animals to humans, as seen with the spread of mad cow disease, or bovine spongiform encephalopathy (BSE), an advanced assay that offers better sensitivity than currently available tests for detecting a prion disease is essential.
Scientists at the Lethbridge Laboratory (AB, Canada) studied elk brains from animals suffering from chronic wasting disease, a prion disease that affects cervids, which are hoofed ruminant mammals in the deer family, as the model for the assay. Surveillance programs rely on highly sensitive diagnostic methods to detect infections early. Addressing the need to define steadfast analytical performance criteria for prion amyloid seeding assays (ASAs), they developed a method to measure prion protein conversion time (from normal cellular form to prion form) by a combination of statistical analyses to obtain a prion-detecting ASA with a known degree of confidence.
The timed prion seeding assay (tASA) is an in vitro method that mimics the conjectured mechanism of prion propagation in vivo. It is a conversion assay that uses recombinant prion-related protein as a substrate and detects conversion via changes in fluorescence. The team described time specifications for the assay to help avoid false-positive results (30 hours) or false-negative results in weakly positive samples (48 hours), as well as the number of replications necessary for adequate sensitivity (two to 12). The assay is analyzed on a FLUOstar Omega microplate reader (BMG Labtech, Ortenberg, Germany).
They compared the sensitivity of the new assay technique, the tASA to other currently available tests: two bioassays in laboratory rodents and three commercially available TSE rapid tests. The three regulatory-approved TSE rapid test platforms were the Prionics Check WESTERN (Thermo Fisher Scientific, Waltham, MA, USA); the Bio-Rad TeSeE enzyme-linked immunosorbent assay (ELISA, Hercules, CA, USA); and the IDEXX HerdChek CWD enzyme-linked immunoassay (EIA, IDEXX, Westbrook, ME, USA).
The investigators were able to define clear cut-off criteria, allowing determination of TSE-positive and TSE-negative states. Unlike TSE rapid tests, ASAs also have the potential to detect and measure TSE infection in blood, saliva, or urine. This would offer clinical advantages, such as the ability to sample blood instead of relying on more invasive tissue biopsy and to screen blood donations for contamination.
John G. Gray, MS, the lead author of the study said, “We found that the tASA was at least as sensitive as two rodent bioassays and up to 16 times more sensitive than three different TSE rapid tests. We believe this methodology represents the future for prion diagnostics, especially concerning human health, for example in screening blood donations.” The study will be published on April 8, 2016, in The Journal of Molecular Diagnostics.
Related Links:
Lethbridge Laboratory
BMG Labtech
Thermo Fisher Scientific
Bio-Rad Laboratories
IDEXX
Because TSEs have the potential of crossing from animals to humans, as seen with the spread of mad cow disease, or bovine spongiform encephalopathy (BSE), an advanced assay that offers better sensitivity than currently available tests for detecting a prion disease is essential.
Scientists at the Lethbridge Laboratory (AB, Canada) studied elk brains from animals suffering from chronic wasting disease, a prion disease that affects cervids, which are hoofed ruminant mammals in the deer family, as the model for the assay. Surveillance programs rely on highly sensitive diagnostic methods to detect infections early. Addressing the need to define steadfast analytical performance criteria for prion amyloid seeding assays (ASAs), they developed a method to measure prion protein conversion time (from normal cellular form to prion form) by a combination of statistical analyses to obtain a prion-detecting ASA with a known degree of confidence.
The timed prion seeding assay (tASA) is an in vitro method that mimics the conjectured mechanism of prion propagation in vivo. It is a conversion assay that uses recombinant prion-related protein as a substrate and detects conversion via changes in fluorescence. The team described time specifications for the assay to help avoid false-positive results (30 hours) or false-negative results in weakly positive samples (48 hours), as well as the number of replications necessary for adequate sensitivity (two to 12). The assay is analyzed on a FLUOstar Omega microplate reader (BMG Labtech, Ortenberg, Germany).
They compared the sensitivity of the new assay technique, the tASA to other currently available tests: two bioassays in laboratory rodents and three commercially available TSE rapid tests. The three regulatory-approved TSE rapid test platforms were the Prionics Check WESTERN (Thermo Fisher Scientific, Waltham, MA, USA); the Bio-Rad TeSeE enzyme-linked immunosorbent assay (ELISA, Hercules, CA, USA); and the IDEXX HerdChek CWD enzyme-linked immunoassay (EIA, IDEXX, Westbrook, ME, USA).
The investigators were able to define clear cut-off criteria, allowing determination of TSE-positive and TSE-negative states. Unlike TSE rapid tests, ASAs also have the potential to detect and measure TSE infection in blood, saliva, or urine. This would offer clinical advantages, such as the ability to sample blood instead of relying on more invasive tissue biopsy and to screen blood donations for contamination.
John G. Gray, MS, the lead author of the study said, “We found that the tASA was at least as sensitive as two rodent bioassays and up to 16 times more sensitive than three different TSE rapid tests. We believe this methodology represents the future for prion diagnostics, especially concerning human health, for example in screening blood donations.” The study will be published on April 8, 2016, in The Journal of Molecular Diagnostics.
Related Links:
Lethbridge Laboratory
BMG Labtech
Thermo Fisher Scientific
Bio-Rad Laboratories
IDEXX
Latest Technology News
- POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
- Study Explores Impact of POC Testing on Future of Diagnostics
- Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
- Nanotechnology For Cervical Cancer Diagnosis Could Replace Invasive Pap Smears
- Lab-On-Chip Platform to Expedite Cancer Diagnoses
- Biosensing Platform Simultaneously Detects Vitamin C and SARS-CoV-2
- New Lens Method Analyzes Tears for Early Disease Detection
- FET-Based Sensors Pave Way for Portable Diagnostic Devices Capable of Detecting Multiple Diseases
- Paper-Based Biosensor System to Detect Glucose Using Sweat Could Revolutionize Diabetes Management
- First AI-Powered Blood Test Identifies Patients in Earliest Stage of Breast Cancer
- Optical Biosensor Rapidly Detects Monkeypox Virus at Point of Care
- Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients
- New Noninvasive Methods Detect Lead Exposure Faster, Easier and More Accurately at POC
- Noninvasive Test Detects Malaria Without Blood Sample
- Low-Cost, Portable Device Detects Colorectal and Prostate Cancer in An Hour
- Light-AI Cancer Diagnosis Technology Could Eliminate Need for Traditional Blood Draws and Biopsies
Channels
Clinical Chemistry
view channel
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read more
AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
Accurately monitoring drug levels in the blood is essential for effective treatment, particularly in the management of cardiovascular diseases. Traditional techniques for monitoring blood drug levels often... Read more
Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
Timely and accurate monitoring of renal function is essential for managing patients at risk of acute kidney injury (AKI), which affects about 12% of hospitalized patients and up to 57% of ICU patients.... Read more
Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
Nanopores are tiny openings that can detect individual molecules as they pass through, making them ideal for analyzing biomolecules like DNA and proteins. However, detecting proteins at extremely low ... Read moreMolecular Diagnostics
view channel
Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries
Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more
CRISPR-Based Test Diagnoses Life-Threatening Fungal Infection More Quickly
Pneumocystis jirovecii pneumonia (PJP) is a serious fungal infection that mainly affects children and those with weakened immune systems. Diagnosing PJP typically requires invasive procedures like bronchoalveolar... Read more
First Of Its Kind Measles Antibody Test Validated for Use with Dried Blood Spot Samples
Measles is a highly contagious airborne disease that can lead to serious complications for those infected. With the number of measles cases increasing worldwide, expanding and improving access to testing... Read moreHematology
view channel
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read more
WBC Count Could Predict Severity of COVID-19 Symptoms
The global health crisis caused by the SARS-CoV-2 virus continues to impact millions of people worldwide, with many experiencing persistent symptoms months after the initial diagnosis. Cognitive impairment... Read more
New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
Accurate platelet count testing is a significant challenge for laboratories. Inaccurate results can lead to misdiagnosis, missed diagnoses, and delayed treatment for a variety of potentially fatal conditions,... Read more
Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
Heparin-induced thrombocytopenia (HIT), a serious side effect of the blood thinner heparin, is difficult to diagnose because thrombocytopenia, or low platelet count, can be caused by a variety of factors... Read moreImmunology
view channel
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more
Novel Analytical Method Tracks Progression of Autoimmune Diseases
Patients with autoimmune diseases often have lifelong contact with doctors and hospitals. The typical patient diagnosed is a woman in her fifties and the disease requires lifelong treatment.... Read more3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
Tumor heterogeneity presents a major obstacle in the development and treatment of cancer therapies, as patients' responses to the same drug can differ, and the timing of treatment significantly influences prognosis. Consequently, technologies that predict the effectiveness of anticancer treatments are essential in minimizing... Read morePathology
view channel
Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
Tissue analysis typically involves a pathologist reviewing scanned digital slides from a patient’s intestinal sample and marking specific areas, such as those where cancerous and related tissues are present.... Read moreTechnology
view channel
POC Paper-Based Sensor Platform to Transform Cardiac Diagnostics
Cardiovascular diseases continue to be the leading cause of death worldwide, accounting for over 19 million fatalities annually. Early detection of myocardial infarction (MI), commonly known as a heart... Read more
Study Explores Impact of POC Testing on Future of Diagnostics
In today’s rapidly changing world, having quick and accurate access to medical information is more crucial than ever. Point-of-Care Diagnostics (PoC-D) and Point-of-Care Testing (PoC-T) are making this... Read more
Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer
Cancer biomarkers are valuable tools for early diagnosis as their concentration in body fluids, such as serum, can be measured to detect the disease at an earlier stage. Additionally, serum levels of these... Read moreIndustry
view channel
Bio-Rad to Acquire Digital PCR Developer Stilla Technologies
Bio-Rad Laboratories (Hercules, CA, USA) has entered into a binding offer to purchase all equity interests in Stilla Technologies (Villejuif, France). The acquisition remains subject to consultation with... Read more