New Assay Improves Detection Of Deadly Prion Diseases
|
By LabMedica International staff writers Posted on 28 Apr 2016 |

Image: The FLUOstar Omega microplate reader (Photo courtesy of BMG Labtech).
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are a family of rare progressive, neurodegenerative illnesses that affect both humans and animals and TSE surveillance is important for public health and food safety.
Because TSEs have the potential of crossing from animals to humans, as seen with the spread of mad cow disease, or bovine spongiform encephalopathy (BSE), an advanced assay that offers better sensitivity than currently available tests for detecting a prion disease is essential.
Scientists at the Lethbridge Laboratory (AB, Canada) studied elk brains from animals suffering from chronic wasting disease, a prion disease that affects cervids, which are hoofed ruminant mammals in the deer family, as the model for the assay. Surveillance programs rely on highly sensitive diagnostic methods to detect infections early. Addressing the need to define steadfast analytical performance criteria for prion amyloid seeding assays (ASAs), they developed a method to measure prion protein conversion time (from normal cellular form to prion form) by a combination of statistical analyses to obtain a prion-detecting ASA with a known degree of confidence.
The timed prion seeding assay (tASA) is an in vitro method that mimics the conjectured mechanism of prion propagation in vivo. It is a conversion assay that uses recombinant prion-related protein as a substrate and detects conversion via changes in fluorescence. The team described time specifications for the assay to help avoid false-positive results (30 hours) or false-negative results in weakly positive samples (48 hours), as well as the number of replications necessary for adequate sensitivity (two to 12). The assay is analyzed on a FLUOstar Omega microplate reader (BMG Labtech, Ortenberg, Germany).
They compared the sensitivity of the new assay technique, the tASA to other currently available tests: two bioassays in laboratory rodents and three commercially available TSE rapid tests. The three regulatory-approved TSE rapid test platforms were the Prionics Check WESTERN (Thermo Fisher Scientific, Waltham, MA, USA); the Bio-Rad TeSeE enzyme-linked immunosorbent assay (ELISA, Hercules, CA, USA); and the IDEXX HerdChek CWD enzyme-linked immunoassay (EIA, IDEXX, Westbrook, ME, USA).
The investigators were able to define clear cut-off criteria, allowing determination of TSE-positive and TSE-negative states. Unlike TSE rapid tests, ASAs also have the potential to detect and measure TSE infection in blood, saliva, or urine. This would offer clinical advantages, such as the ability to sample blood instead of relying on more invasive tissue biopsy and to screen blood donations for contamination.
John G. Gray, MS, the lead author of the study said, “We found that the tASA was at least as sensitive as two rodent bioassays and up to 16 times more sensitive than three different TSE rapid tests. We believe this methodology represents the future for prion diagnostics, especially concerning human health, for example in screening blood donations.” The study will be published on April 8, 2016, in The Journal of Molecular Diagnostics.
Related Links:
Lethbridge Laboratory
BMG Labtech
Thermo Fisher Scientific
Bio-Rad Laboratories
IDEXX
Because TSEs have the potential of crossing from animals to humans, as seen with the spread of mad cow disease, or bovine spongiform encephalopathy (BSE), an advanced assay that offers better sensitivity than currently available tests for detecting a prion disease is essential.
Scientists at the Lethbridge Laboratory (AB, Canada) studied elk brains from animals suffering from chronic wasting disease, a prion disease that affects cervids, which are hoofed ruminant mammals in the deer family, as the model for the assay. Surveillance programs rely on highly sensitive diagnostic methods to detect infections early. Addressing the need to define steadfast analytical performance criteria for prion amyloid seeding assays (ASAs), they developed a method to measure prion protein conversion time (from normal cellular form to prion form) by a combination of statistical analyses to obtain a prion-detecting ASA with a known degree of confidence.
The timed prion seeding assay (tASA) is an in vitro method that mimics the conjectured mechanism of prion propagation in vivo. It is a conversion assay that uses recombinant prion-related protein as a substrate and detects conversion via changes in fluorescence. The team described time specifications for the assay to help avoid false-positive results (30 hours) or false-negative results in weakly positive samples (48 hours), as well as the number of replications necessary for adequate sensitivity (two to 12). The assay is analyzed on a FLUOstar Omega microplate reader (BMG Labtech, Ortenberg, Germany).
They compared the sensitivity of the new assay technique, the tASA to other currently available tests: two bioassays in laboratory rodents and three commercially available TSE rapid tests. The three regulatory-approved TSE rapid test platforms were the Prionics Check WESTERN (Thermo Fisher Scientific, Waltham, MA, USA); the Bio-Rad TeSeE enzyme-linked immunosorbent assay (ELISA, Hercules, CA, USA); and the IDEXX HerdChek CWD enzyme-linked immunoassay (EIA, IDEXX, Westbrook, ME, USA).
The investigators were able to define clear cut-off criteria, allowing determination of TSE-positive and TSE-negative states. Unlike TSE rapid tests, ASAs also have the potential to detect and measure TSE infection in blood, saliva, or urine. This would offer clinical advantages, such as the ability to sample blood instead of relying on more invasive tissue biopsy and to screen blood donations for contamination.
John G. Gray, MS, the lead author of the study said, “We found that the tASA was at least as sensitive as two rodent bioassays and up to 16 times more sensitive than three different TSE rapid tests. We believe this methodology represents the future for prion diagnostics, especially concerning human health, for example in screening blood donations.” The study will be published on April 8, 2016, in The Journal of Molecular Diagnostics.
Related Links:
Lethbridge Laboratory
BMG Labtech
Thermo Fisher Scientific
Bio-Rad Laboratories
IDEXX
Latest Technology News
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Channels
Clinical Chemistry
view channel
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read more
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read moreMolecular Diagnostics
view channel
Blood Test Predicts Crohn’s Disease Years Before Symptoms Appear
Crohn’s disease is a chronic inflammatory disorder of the gastrointestinal tract that causes persistent digestive symptoms, pain, and fatigue, often leading to lifelong treatment. Incidence rates are rising... Read more
DNA Testing of Colorectal Polyps Improves Insight into Hereditary Risks
Colorectal cancer is among the most common cancers in Western countries, and hereditary factors are involved in about 5–10% of cases, particularly in younger patients. Individuals with large numbers of... Read moreHematology
view channel
AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
Alpha thalassemia affects millions of people worldwide and is especially common in regions such as Southeast Asia, where carrier rates can reach extremely high levels. While the condition can have significant... Read more
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read moreImmunology
view channel
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read morePathology
view channel
AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery
Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Deep Learning–Based Method Improves Cancer Diagnosis
Identifying vascular invasion is critical for determining how aggressive a cancer is, yet doing so reliably can be difficult using standard pathology workflows. Conventional methods require multiple chemical... Read more
ADLM Updates Expert Guidance on Urine Drug Testing for Patients in Emergency Departments
Urine drug testing plays a critical role in the emergency department, particularly for patients presenting with suspected overdose or altered mental status. Accurate and timely results can directly influence... Read moreTechnology
view channel
AI-Generated Sensors Open New Paths for Early Cancer Detection
Cancers are far easier to treat when detected early, yet many tumors remain invisible until they are advanced or have recurred after surgery. Early-stage disease often produces signals that are too weak... Read more
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







