Innovative Nano-Biosensor Developed for Rapid Detection of Viruses
|
By LabMedica International staff writers Posted on 23 Mar 2016 |

Image: A novel nano-biosensor has been developed for lower-cost, rapid virus detection based on upconversion luminescence resonance energy transfer (LRET) technology and DNA oligo hybridization. Testing takes only 2–3 hours, about 10x faster traditional clinical methods (Photo courtesy of the Hong Kong Polytechnic University).
Scientists have invented a compact, easy-to-use biosensor for rapid, sensitive detection of flu and other viruses by utilizing the optical method of upconversion luminescence resonance energy transfer (LRET).
The new method, invented by researchers at the Hong Kong Polytechnic University (PolyU; Hong Kong), involves simple operational procedures that significantly reduce testing time from around 1–3 days to 2–3 hours, making it over 10 times quicker than traditional clinical methods. Furthermore, it is a low-cost test—about 80% lower than traditional tests, and the technology can be widely used to detect different types of viruses
RT-PCR is expensive and time-consuming while the sensitivity for ELISA is relatively low. Such limitations make these methods difficult for use in front-line and on-site virus detection. This challenge paved the way for the researchers to develop a new biosensor based on the luminescent technique.
The luminescent technique operates analogous to two matching pieces of magnet with attraction force. It involves the development of upconversion nanoparticles (UCNPs) conjugated with an oligo probe whose DNA base pairs are complementary with that of the gold nanoparticles (AuNPs) flu virus oligo. Given the complementarity, the two oligos undergo DNA-DNA hybridization. Upon being illuminated by a portable near-infrared laser pen, the UCNPs emit eye-visible green light while the AuNPs would absorb the green light. One can easily quantify the concentration of the targeted flu virus by measuring the decrease in green light intensity.
Initially, the researchers used upconversion LRET for ultrasensitive virus detection in liquid-phase system. The team then further improved the sensitivity by using a solid-phased nanoporous membrane system (NAAO). As NAAO membrane consists of many hollow channels, it allows more space for oligo hybridization to take place, increasing sensitivity by over 10 folds compared to the liquid-phase system, based on detection using inactivated virus samples.
The new biosensor does not require expensive instruments and sophisticated operational skills, and has sensitivity comparable to traditional clinical methods. In comparison to conventional downconversion luminescent technique, it causes low damage to genetic materials and does not induce background fluorescence. In addition, a complementary probe can be designed to target detection of any virus with known genetic sequence. In other words, the new method can be widely used for the detection of different types of viruses simply by modifying the UCNPs capture probe.
The team will continue to enhance the biosensor for virus detection, including increasing sensitivity and specificity, and developing a matrix for multiplex detection of multiple flu viruses on a single testing platform.
The related results have been recently published in the two nanomaterial research journals ACS Nano and Small.
Related Links:
The Hong Kong Polytechnic University
The new method, invented by researchers at the Hong Kong Polytechnic University (PolyU; Hong Kong), involves simple operational procedures that significantly reduce testing time from around 1–3 days to 2–3 hours, making it over 10 times quicker than traditional clinical methods. Furthermore, it is a low-cost test—about 80% lower than traditional tests, and the technology can be widely used to detect different types of viruses
RT-PCR is expensive and time-consuming while the sensitivity for ELISA is relatively low. Such limitations make these methods difficult for use in front-line and on-site virus detection. This challenge paved the way for the researchers to develop a new biosensor based on the luminescent technique.
The luminescent technique operates analogous to two matching pieces of magnet with attraction force. It involves the development of upconversion nanoparticles (UCNPs) conjugated with an oligo probe whose DNA base pairs are complementary with that of the gold nanoparticles (AuNPs) flu virus oligo. Given the complementarity, the two oligos undergo DNA-DNA hybridization. Upon being illuminated by a portable near-infrared laser pen, the UCNPs emit eye-visible green light while the AuNPs would absorb the green light. One can easily quantify the concentration of the targeted flu virus by measuring the decrease in green light intensity.
Initially, the researchers used upconversion LRET for ultrasensitive virus detection in liquid-phase system. The team then further improved the sensitivity by using a solid-phased nanoporous membrane system (NAAO). As NAAO membrane consists of many hollow channels, it allows more space for oligo hybridization to take place, increasing sensitivity by over 10 folds compared to the liquid-phase system, based on detection using inactivated virus samples.
The new biosensor does not require expensive instruments and sophisticated operational skills, and has sensitivity comparable to traditional clinical methods. In comparison to conventional downconversion luminescent technique, it causes low damage to genetic materials and does not induce background fluorescence. In addition, a complementary probe can be designed to target detection of any virus with known genetic sequence. In other words, the new method can be widely used for the detection of different types of viruses simply by modifying the UCNPs capture probe.
The team will continue to enhance the biosensor for virus detection, including increasing sensitivity and specificity, and developing a matrix for multiplex detection of multiple flu viruses on a single testing platform.
The related results have been recently published in the two nanomaterial research journals ACS Nano and Small.
Related Links:
The Hong Kong Polytechnic University
Latest Technology News
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
- Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
- 3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
- Hybrid Pipette Combines Manual Control with Fast Electronic Aliquoting
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreMolecular Diagnostics
view channel
New DNA Test Tracks Spread of Parasitic Disease from Single Sample
Leishmaniasis remains a major challenge for veterinary and public health systems, largely because its transmission involves multiple sand fly species and a wide range of animal hosts. Understanding these... Read more
Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
Diabetic kidney disease often develops silently, and many patients are diagnosed only after irreversible damage has occurred. Late diagnosis frequently leads to complications affecting the kidneys, heart,... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








