We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Identification of Single Biomolecules Could Soon Be Even Faster

By LabMedica International staff writers
Posted on 08 Feb 2016
Print article
Scientists have developed a breakthrough new method that may soon enable the capture of individual biological molecules 1,000 times faster, leading to more efficient research and diagnostic detection for important medical conditions.

Gathering and identifying molecules for analysis can be done by passing molecules in solution through a nanopore and detecting the change in electric current the molecules create. The problem with this technique, “nanopore sensing,” is that it is usually diffusion-limited, and so relies on molecules drifting close to the nanopore before being captured.

Now, a team led by researchers at Imperial College London (London, UK) in collaboration with colleagues at University of Minnesota (Minneapolis – St. Paul; MN; USA) have demonstrated a technique to attract molecules towards the nanopore, making the process up to 1,000 times more efficient.

“By pulling molecules towards the detector instead of relying purely on diffusion, we can access a much larger volume, and by doing so can detect the same number of molecules from a much smaller concentration,” said senior author Dr. Joshua Edel from Imperial, “What might currently take 5 hours to analyze could be done in a couple of minutes with our new method.”

The technique, “single molecule dielectrophoretic trapping,” will also allow for analysis of very dilute samples. Capability to analyze molecules in low-concentration samples could be particularly important when looking for evidence of epigenetic modifications such as DNA methylation. The team tested their method with DNA molecules, but said it could be modified to detect a wide range of medically important molecules, from proteins to whole cells.

The technique uses an electrically-charged nano-pipette that exerts an electrical attraction force on the molecule that draws it close to the pipette tip, the nanopore. The shape and minute size of the tip, less than 50 nanometres, enables detection of single molecules.

Detecting and analyzing each molecule individually also avoids the problem of averaged results that obscure rare, but possibly important, events. “We can now capture needle-in-a-haystack events,” said coauthors Dr. Aleksandar Ivanov and Dr. Kevin Freedman of Imperial. “The huge increase in efficiency brought about by this technique paves the way for high-speed and high-throughput detection of rare events in ultra-dilute samples.” The team has filed a patent for their invention and expect that it will have application implications in the near future.

The study, by Freedman KJ et al., was published 2016, in the journal Nature Communications.

Related Links:

Imperial College London
University of Minnesota


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Urine Drug Test
Instant-view Methadone Urine Drug Test
New
Laboratory Electric Thermostat
DNP-9025A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The FDA clearance for the QIAstat-Dx Respiratory Panel Mini test follows the recent approval of QIAstat-Dx Respiratory Panel Plus (Photo courtesy of QIAGEN)

Respiratory Panel to Help Clinicians Make Precise Treatment Decisions in Outpatient Settings

Respiratory tract infections are the primary reason for visits to emergency departments and subsequent hospitalizations. In the U.S., it is estimated that there are up to 41 million cases of influenza... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: The new technique allows properties of cancer cells and their surrounding tissue to be analyzed in detail at single-cell level (Photo courtesy of Universität Helsinki/Karolina Punovuori)

New Imaging Method Opens Door to Precision Diagnostics for Head and Neck Cancers

Head and neck cancers, while considered rare, represent a significant portion of cancer cases and have seen a notable increase over the past 30 years. These cancers encompass various malignant tumors that... Read more