Identification of Single Biomolecules Could Soon Be Even Faster
By LabMedica International staff writers Posted on 08 Feb 2016 |
Scientists have developed a breakthrough new method that may soon enable the capture of individual biological molecules 1,000 times faster, leading to more efficient research and diagnostic detection for important medical conditions.
Gathering and identifying molecules for analysis can be done by passing molecules in solution through a nanopore and detecting the change in electric current the molecules create. The problem with this technique, “nanopore sensing,” is that it is usually diffusion-limited, and so relies on molecules drifting close to the nanopore before being captured.
Now, a team led by researchers at Imperial College London (London, UK) in collaboration with colleagues at University of Minnesota (Minneapolis – St. Paul; MN; USA) have demonstrated a technique to attract molecules towards the nanopore, making the process up to 1,000 times more efficient.
“By pulling molecules towards the detector instead of relying purely on diffusion, we can access a much larger volume, and by doing so can detect the same number of molecules from a much smaller concentration,” said senior author Dr. Joshua Edel from Imperial, “What might currently take 5 hours to analyze could be done in a couple of minutes with our new method.”
The technique, “single molecule dielectrophoretic trapping,” will also allow for analysis of very dilute samples. Capability to analyze molecules in low-concentration samples could be particularly important when looking for evidence of epigenetic modifications such as DNA methylation. The team tested their method with DNA molecules, but said it could be modified to detect a wide range of medically important molecules, from proteins to whole cells.
The technique uses an electrically-charged nano-pipette that exerts an electrical attraction force on the molecule that draws it close to the pipette tip, the nanopore. The shape and minute size of the tip, less than 50 nanometres, enables detection of single molecules.
Detecting and analyzing each molecule individually also avoids the problem of averaged results that obscure rare, but possibly important, events. “We can now capture needle-in-a-haystack events,” said coauthors Dr. Aleksandar Ivanov and Dr. Kevin Freedman of Imperial. “The huge increase in efficiency brought about by this technique paves the way for high-speed and high-throughput detection of rare events in ultra-dilute samples.” The team has filed a patent for their invention and expect that it will have application implications in the near future.
The study, by Freedman KJ et al., was published 2016, in the journal Nature Communications.
Related Links:
Imperial College London
University of Minnesota
Gathering and identifying molecules for analysis can be done by passing molecules in solution through a nanopore and detecting the change in electric current the molecules create. The problem with this technique, “nanopore sensing,” is that it is usually diffusion-limited, and so relies on molecules drifting close to the nanopore before being captured.
Now, a team led by researchers at Imperial College London (London, UK) in collaboration with colleagues at University of Minnesota (Minneapolis – St. Paul; MN; USA) have demonstrated a technique to attract molecules towards the nanopore, making the process up to 1,000 times more efficient.
“By pulling molecules towards the detector instead of relying purely on diffusion, we can access a much larger volume, and by doing so can detect the same number of molecules from a much smaller concentration,” said senior author Dr. Joshua Edel from Imperial, “What might currently take 5 hours to analyze could be done in a couple of minutes with our new method.”
The technique, “single molecule dielectrophoretic trapping,” will also allow for analysis of very dilute samples. Capability to analyze molecules in low-concentration samples could be particularly important when looking for evidence of epigenetic modifications such as DNA methylation. The team tested their method with DNA molecules, but said it could be modified to detect a wide range of medically important molecules, from proteins to whole cells.
The technique uses an electrically-charged nano-pipette that exerts an electrical attraction force on the molecule that draws it close to the pipette tip, the nanopore. The shape and minute size of the tip, less than 50 nanometres, enables detection of single molecules.
Detecting and analyzing each molecule individually also avoids the problem of averaged results that obscure rare, but possibly important, events. “We can now capture needle-in-a-haystack events,” said coauthors Dr. Aleksandar Ivanov and Dr. Kevin Freedman of Imperial. “The huge increase in efficiency brought about by this technique paves the way for high-speed and high-throughput detection of rare events in ultra-dilute samples.” The team has filed a patent for their invention and expect that it will have application implications in the near future.
The study, by Freedman KJ et al., was published 2016, in the journal Nature Communications.
Related Links:
Imperial College London
University of Minnesota
Latest Molecular Diagnostics News
- Rapid POC Diagnostic Test Detects Asymptomatic Malaria Cases
- Improved DNA Sequencing Tool Uncovers Hidden Mutations Driving Cancer
- Newborn Genomic Screening Enables More Lifesaving Diagnoses
- Blood Protein Tests Could Identify Distinct Molecular Fingerprints of Multiple Diseases
- Interstitial Lung Disease Test Could Identify Patients Before Symptoms Appear
- Genomic-First Approach Identifies Rare Genetic Disorders Earlier
- Simple Blood Test Could Reveal Kidney Disease Earlier
- Revolutionary Blood Test Accurately Diagnoses Chronic Fatigue Syndrome
- Stool-Based DNA Testing Leads to Timely Colonoscopy
- Groundbreaking Tool Improves Genetic Testing Accuracy
- Biomarker Blood Test Could Predict Development of Long COVID
- Polygenic Risk Score Blood Test Predicts Future Breast Cancer
- AI-Powered Blood Tests Enable Early Detection of Alzheimer’s Disease
- Simple Urine Test Could Illuminate Hidden Tumors for Early Cancer Diagnosis
- Kidney Disease Blood Marker Could Also Identify Cardiovascular Problems
- Automated Molecular Tests Detect Bacterial Pathogens Causing Infectious Gastroenteritis
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Rapid POC Diagnostic Test Detects Asymptomatic Malaria Cases
Malaria is one of the leading causes of preventable deaths worldwide, with around 95% of all deaths occurring in Africa. Asymptomatic infections are a major driver of ongoing transmission because individuals... Read more
Improved DNA Sequencing Tool Uncovers Hidden Mutations Driving Cancer
As humans age, their cells naturally accumulate DNA mutations, most of which are harmless, but some can give cells a growth advantage and initiate cancer. Detecting these rare mutations in normal tissues... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Multi-Omics Tool Illuminates Cancer Progression
Tracking how cancers evolve into more aggressive and therapy-resistant forms has long been a challenge for researchers. Many current tools can only capture limited genetic information from tumor samples,... Read more
New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
Determining the genetic profile of brain tumors during surgery is crucial for improving patient outcomes, but conventional analysis methods can take up to two days, delaying critical decisions.... Read more
New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
Skin cancer is the most common malignancy worldwide, and accurately assessing tumor invasion or treatment response remains a major clinical challenge. Current imaging methods, such as confocal microscopy... Read more
Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
Glioblastoma (GBM) is the most aggressive form of brain cancer, known for rapid growth, recurrence, and resistance to treatment. Understanding how tumors respond to therapy remains challenging since imaging... Read moreIndustry
view channel
Bio-Techne and Oxford Nanopore to Accelerate Development of Genetics Portfolio
Bio-Techne Corporation (Minneapolis, MN, USA) has expanded its agreement with Oxford Nanopore Technologies (Oxford, UK) to broaden Bio-Techne's ability to develop a portfolio of genetic products on Oxford... Read more
Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders
Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more