LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Successful Transport of Blood Samples with Small Drones

By LabMedica International staff writers
Posted on 17 Aug 2015
Print article
Image: Preparation of clinical blood samples for test-flights by small drone. (1) Left: Custom-cut foam block. (2) Right: Placement of sealed foam lock in the bio-hazard bags as well as absorbent material for potential sample containment (Photos courtesy of Johns Hopkins Medicine and PLOS One).
Image: Preparation of clinical blood samples for test-flights by small drone. (1) Left: Custom-cut foam block. (2) Right: Placement of sealed foam lock in the bio-hazard bags as well as absorbent material for potential sample containment (Photos courtesy of Johns Hopkins Medicine and PLOS One).
Image: (3) Left: Placement of first bio-hazard bag inside the second bio-hazard bag. (4) Middle-right: Placement of double-wrapped payload in the fuselage (Photo courtesy of Johns Hopkins Medicine and PLOS One).
Image: (3) Left: Placement of first bio-hazard bag inside the second bio-hazard bag. (4) Middle-right: Placement of double-wrapped payload in the fuselage (Photo courtesy of Johns Hopkins Medicine and PLOS One).
Image: (5) Left: Covered, secured, and labeled fuselage. (6) Right: Launch with hand toss (Photo courtesy of Johns Hopkins Medicine and PLOS One).
Image: (5) Left: Covered, secured, and labeled fuselage. (6) Right: Launch with hand toss (Photo courtesy of Johns Hopkins Medicine and PLOS One).
A proof-of-concept, initial study has shown that small unmanned aerial systems (UAS) could potentially be used to transport clinical blood specimens for diagnostics without damage to the specimens.

In a first rigorous examination published about the impact of drone transport on biological samples, a team of clinical researchers and engineers, led by Timothy Kien Amukele, MD, PhD, pathologist at Johns Hopkins University School of Medicine (Baltimore, MD, USA) and director of a collaboration with Makerere University in Uganda, found that results of common, routine tests on the blood samples were not affected by up to 40 minutes of sample-travel in hobby-sized drones. This could especially aid millions of people in developing nations where most tests are currently done by dedicated laboratories that can be scores of miles from remote clinics in rural and economically impoverished areas that lack, for example, good roads.

“Biological samples can be very sensitive and fragile,” said Dr. Amukele. That sensitivity makes even the pneumatic-tube systems used by many hospitals, for example, unsuitable for transporting blood for certain purposes. Of particular concern related to sample transport in drones is the sudden acceleration that marks the launch of the vehicle and the jostling when the drone lands on its belly. “Such movements could have destroyed blood cells or prompted blood to coagulate and I thought all kinds of blood tests might be affected, but our study shows they weren’t,” he added.

For the study, total of 6 blood samples were collected from each of 56 healthy adult volunteers at Johns Hopkins Hospital. Samples were driven to a flight site an hour’s drive from the hospital on days when the temperature was moderate. There, half the samples were held stationary (non-flight); the other half were packaged for protection during the in-flight environment and to prevent leakage, then loaded into a hand-launched fixed-wing drone and flown for periods of 6–38 minutes. Owing to Federal Aviation Administration (FAA) rules, the flights were conducted in an unpopulated area, kept below 100 meters and in the line-of-sight of the certified drone pilot.

Samples were driven back from the flight-field to the Johns Hopkins Hospital Core Laboratory, where 33 of the most common chemistry, hematology, and coagulation tests were performed (tests that together account for around 80% of all such tests performed), including for sodium, glucose, and red blood cell count.

Comparing lab results of the flown vs. non-flown samples from each volunteer showed that these flights essentially had no impact, although the precision of one blood test—for total carbon dioxide (the bicarbonate test)—did differ for some samples pairs. This may be because the blood sat for up to 8 hours before being tested, but whether the out-of-range results were due to this time lag or to the drone transport is unknown. Nevertheless, there were no consistent differences in results between the flown vs. non-flown blood.

“The ideal way to test that would be to fly the blood around immediately after drawing it, but neither the FAA nor Johns Hopkins would like drones flying around the hospital,” said Dr. Amukele.

The likely next step is a pilot study in Africa where clinics are sometimes 60 or more miles away from labs. “A drone could go 100 km in 40 minutes,” said Dr. Amukele, “They’re less expensive than motorcycles, are not subject to traffic delays, and the technology already exists for the drone to be programmed to “home” to certain GPS coordinates, like a carrier pigeon.”

Drones have already been tested as carriers of medicines to clinics in remote areas, but whether and how drones will be used to carry medicines and potentially infectious patient specimens over more populated areas will depend on laws and regulations.

The study, by Amukele TK, et al, was published July 29, 2015, in the journal PLOS One.

Related Links:

Johns Hopkins University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: Molecular PCR-grade detection of Lyme bacteria right at the tick bite (Photo courtesy of En Carta Diagnostics)

Groundbreaking Molecular Diagnostic Kit to Provide Lyme Disease Detection in Minutes

Lyme disease, transmitted through tick bites, is a bacteria-caused illness that impacts 1.2 million individuals annually. The standard methods for diagnosing this disease include clinical examinations,... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The novel test uses an existing diagnostic procedure as its basis to target the Epstein Barr Virus (Photo courtesy of 123RF)

Blood Test Measures Immune Response to Epstein-Barr Virus in MS Patients

Multiple sclerosis (MS) is a chronic neurological condition for which there is currently no cure. It affects around three million people globally and ranks as the second most common cause of disability... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more