Successful Transport of Blood Samples with Small Drones
|
By LabMedica International staff writers Posted on 17 Aug 2015 |

Image: Preparation of clinical blood samples for test-flights by small drone. (1) Left: Custom-cut foam block. (2) Right: Placement of sealed foam lock in the bio-hazard bags as well as absorbent material for potential sample containment (Photos courtesy of Johns Hopkins Medicine and PLOS One).

Image: (3) Left: Placement of first bio-hazard bag inside the second bio-hazard bag. (4) Middle-right: Placement of double-wrapped payload in the fuselage (Photo courtesy of Johns Hopkins Medicine and PLOS One).

Image: (5) Left: Covered, secured, and labeled fuselage. (6) Right: Launch with hand toss (Photo courtesy of Johns Hopkins Medicine and PLOS One).
A proof-of-concept, initial study has shown that small unmanned aerial systems (UAS) could potentially be used to transport clinical blood specimens for diagnostics without damage to the specimens.
In a first rigorous examination published about the impact of drone transport on biological samples, a team of clinical researchers and engineers, led by Timothy Kien Amukele, MD, PhD, pathologist at Johns Hopkins University School of Medicine (Baltimore, MD, USA) and director of a collaboration with Makerere University in Uganda, found that results of common, routine tests on the blood samples were not affected by up to 40 minutes of sample-travel in hobby-sized drones. This could especially aid millions of people in developing nations where most tests are currently done by dedicated laboratories that can be scores of miles from remote clinics in rural and economically impoverished areas that lack, for example, good roads.
“Biological samples can be very sensitive and fragile,” said Dr. Amukele. That sensitivity makes even the pneumatic-tube systems used by many hospitals, for example, unsuitable for transporting blood for certain purposes. Of particular concern related to sample transport in drones is the sudden acceleration that marks the launch of the vehicle and the jostling when the drone lands on its belly. “Such movements could have destroyed blood cells or prompted blood to coagulate and I thought all kinds of blood tests might be affected, but our study shows they weren’t,” he added.
For the study, total of 6 blood samples were collected from each of 56 healthy adult volunteers at Johns Hopkins Hospital. Samples were driven to a flight site an hour’s drive from the hospital on days when the temperature was moderate. There, half the samples were held stationary (non-flight); the other half were packaged for protection during the in-flight environment and to prevent leakage, then loaded into a hand-launched fixed-wing drone and flown for periods of 6–38 minutes. Owing to Federal Aviation Administration (FAA) rules, the flights were conducted in an unpopulated area, kept below 100 meters and in the line-of-sight of the certified drone pilot.
Samples were driven back from the flight-field to the Johns Hopkins Hospital Core Laboratory, where 33 of the most common chemistry, hematology, and coagulation tests were performed (tests that together account for around 80% of all such tests performed), including for sodium, glucose, and red blood cell count.
Comparing lab results of the flown vs. non-flown samples from each volunteer showed that these flights essentially had no impact, although the precision of one blood test—for total carbon dioxide (the bicarbonate test)—did differ for some samples pairs. This may be because the blood sat for up to 8 hours before being tested, but whether the out-of-range results were due to this time lag or to the drone transport is unknown. Nevertheless, there were no consistent differences in results between the flown vs. non-flown blood.
“The ideal way to test that would be to fly the blood around immediately after drawing it, but neither the FAA nor Johns Hopkins would like drones flying around the hospital,” said Dr. Amukele.
The likely next step is a pilot study in Africa where clinics are sometimes 60 or more miles away from labs. “A drone could go 100 km in 40 minutes,” said Dr. Amukele, “They’re less expensive than motorcycles, are not subject to traffic delays, and the technology already exists for the drone to be programmed to “home” to certain GPS coordinates, like a carrier pigeon.”
Drones have already been tested as carriers of medicines to clinics in remote areas, but whether and how drones will be used to carry medicines and potentially infectious patient specimens over more populated areas will depend on laws and regulations.
The study, by Amukele TK, et al, was published July 29, 2015, in the journal PLOS One.
Related Links:
Johns Hopkins University School of Medicine
In a first rigorous examination published about the impact of drone transport on biological samples, a team of clinical researchers and engineers, led by Timothy Kien Amukele, MD, PhD, pathologist at Johns Hopkins University School of Medicine (Baltimore, MD, USA) and director of a collaboration with Makerere University in Uganda, found that results of common, routine tests on the blood samples were not affected by up to 40 minutes of sample-travel in hobby-sized drones. This could especially aid millions of people in developing nations where most tests are currently done by dedicated laboratories that can be scores of miles from remote clinics in rural and economically impoverished areas that lack, for example, good roads.
“Biological samples can be very sensitive and fragile,” said Dr. Amukele. That sensitivity makes even the pneumatic-tube systems used by many hospitals, for example, unsuitable for transporting blood for certain purposes. Of particular concern related to sample transport in drones is the sudden acceleration that marks the launch of the vehicle and the jostling when the drone lands on its belly. “Such movements could have destroyed blood cells or prompted blood to coagulate and I thought all kinds of blood tests might be affected, but our study shows they weren’t,” he added.
For the study, total of 6 blood samples were collected from each of 56 healthy adult volunteers at Johns Hopkins Hospital. Samples were driven to a flight site an hour’s drive from the hospital on days when the temperature was moderate. There, half the samples were held stationary (non-flight); the other half were packaged for protection during the in-flight environment and to prevent leakage, then loaded into a hand-launched fixed-wing drone and flown for periods of 6–38 minutes. Owing to Federal Aviation Administration (FAA) rules, the flights were conducted in an unpopulated area, kept below 100 meters and in the line-of-sight of the certified drone pilot.
Samples were driven back from the flight-field to the Johns Hopkins Hospital Core Laboratory, where 33 of the most common chemistry, hematology, and coagulation tests were performed (tests that together account for around 80% of all such tests performed), including for sodium, glucose, and red blood cell count.
Comparing lab results of the flown vs. non-flown samples from each volunteer showed that these flights essentially had no impact, although the precision of one blood test—for total carbon dioxide (the bicarbonate test)—did differ for some samples pairs. This may be because the blood sat for up to 8 hours before being tested, but whether the out-of-range results were due to this time lag or to the drone transport is unknown. Nevertheless, there were no consistent differences in results between the flown vs. non-flown blood.
“The ideal way to test that would be to fly the blood around immediately after drawing it, but neither the FAA nor Johns Hopkins would like drones flying around the hospital,” said Dr. Amukele.
The likely next step is a pilot study in Africa where clinics are sometimes 60 or more miles away from labs. “A drone could go 100 km in 40 minutes,” said Dr. Amukele, “They’re less expensive than motorcycles, are not subject to traffic delays, and the technology already exists for the drone to be programmed to “home” to certain GPS coordinates, like a carrier pigeon.”
Drones have already been tested as carriers of medicines to clinics in remote areas, but whether and how drones will be used to carry medicines and potentially infectious patient specimens over more populated areas will depend on laws and regulations.
The study, by Amukele TK, et al, was published July 29, 2015, in the journal PLOS One.
Related Links:
Johns Hopkins University School of Medicine
Latest Hematology News
- New Guidelines Aim to Improve AL Amyloidosis Diagnosis
- Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
- Fast and Easy Test Could Revolutionize Blood Transfusions
- High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
- AI Algorithm Effectively Distinguishes Alpha Thalassemia Subtypes
- MRD Tests Could Predict Survival in Leukemia Patients
- Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
- Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
- ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
- Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
- Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
- Platelets Could Improve Early and Minimally Invasive Detection of Cancer
- Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes

- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Blood Test Could Detect Infection Exposure History
Every infection leaves a lasting imprint on the immune system, but current diagnostic tools can usually detect exposure to only one pathogen at a time. This makes it difficult to understand a person’s... Read more
Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
Malaria remains the deadliest parasitic disease worldwide, and although it is not endemic in countries such as Spain, imported cases are diagnosed every year in travelers returning from high-risk regions.... Read more
Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Monitoring minimal residual disease (MRD) after bladder cancer treatment is critical because early relapse often occurs before tumors are visible by imaging or cystoscopy. Urine tumor DNA analysis offers... Read more
Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
Primary central nervous system lymphoma (PCNSL) is typically diagnosed through surgical biopsy, which remains the gold standard but carries substantial risk. Operability depends heavily on tumor location,... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
AI Algorithms Improve Genetic Mutation Detection in Cancer Diagnostics
Accurately identifying genetic mutations is central to cancer diagnostics and genomic research, but current methods struggle with complex sequencing data and limited clinical samples. Tumor analysis often... Read more
Skin Biopsy Offers New Diagnostic Method for Neurodegenerative Diseases
Transthyretin amyloidosis (ATTR) is a rare, progressive, and highly aggressive disease caused by the misfolding of a specific protein that accumulates as toxic amyloid filaments in multiple organs.... Read moreIndustry
view channel
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







