We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2025 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Rapid Extraction Technique Prepares Urine Samples for Mass Spectrometry Analysis

By LabMedica International staff writers
Posted on 07 Jun 2015
Image: The centrifugation step is the key to removing protein biomarkers from urine\'s high salt matrix (Photo courtesy of Clemson University).
Image: The centrifugation step is the key to removing protein biomarkers from urine\'s high salt matrix (Photo courtesy of Clemson University).
Disposable mini-tubes packed with capillary-channeled polymer (C-CP) fibers have been adapted for the rapid extraction of proteins from urine specimens for analysis by MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry).

While mass spectrometry is a powerful tool for biomarker determinations, the high salt content and the matrix of small molecules present in urine has reduced its applicability for urinary diagnosis. To correct this deficiency, investigators at Clemson University (SC, USA) packed micropipette tips with C-CP fibers. These fibers possess a unique geometry that includes eight channels that extend the entire fiber length (which can be miles on a spool). The fibers are nominally an oblong shape with diameters ranging from 35 to 50 micrometers, with the individual channels ranging in size from five to 20 micrometers.

Urine samples were passed through fiber-packed tubes by spinning them in a centrifuge for 30 seconds. Following centrifugation de-ionized water was run through the tubes for one minute to wash off salt and other contaminants. Hydrophobic proteins, which remained bound to the fibers, were extracted for MALDI-MS analysis with appropriate solvents during a 30 second centrifugation step.

Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique used in mass spectrometry, allowing the analysis of biomolecules (biopolymers such as DNA, proteins, peptides, and sugars) and large organic molecules (such as polymers, dendrimers, and other macromolecules), which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI produces far fewer multiply charged ions.

The C-CP fiber method was validated by measuring the urinary proteins beta-2-microglobulin, retinol binding protein, and transferrin. C-CP fiber tips offered several advantages including low materials costs, high throughput, microvolume processing, and the determination of sub-nanogram quantities of analyte; allowing determination of biomarkers that are otherwise undetectable in urine samples.

"You have got almost seawater coming out of you, and I am trying to find something far smaller than a needle in a haystack," said senior author Dr. Ken Marcus, professor of analytical chemistry at Clemson University. "The concentrations of these proteins would be one part in a billion."

The C-CP fiber method for urine sample purification was described in the March 18, 2015, online edition of the journal Proteomics-Clinical Applications.

Related Links:

Clemson University


Gold Member
Hematology Analyzer
Medonic M32B
Gold Member
Automatic Hematology Analyzer
DH-800 Series
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Laboratory Software
ArtelWare

Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
GLOBE SCIENTIFIC, LLC