Rapid Extraction Technique Prepares Urine Samples for Mass Spectrometry Analysis
|
By LabMedica International staff writers Posted on 07 Jun 2015 |

Image: The centrifugation step is the key to removing protein biomarkers from urine\'s high salt matrix (Photo courtesy of Clemson University).
Disposable mini-tubes packed with capillary-channeled polymer (C-CP) fibers have been adapted for the rapid extraction of proteins from urine specimens for analysis by MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry).
While mass spectrometry is a powerful tool for biomarker determinations, the high salt content and the matrix of small molecules present in urine has reduced its applicability for urinary diagnosis. To correct this deficiency, investigators at Clemson University (SC, USA) packed micropipette tips with C-CP fibers. These fibers possess a unique geometry that includes eight channels that extend the entire fiber length (which can be miles on a spool). The fibers are nominally an oblong shape with diameters ranging from 35 to 50 micrometers, with the individual channels ranging in size from five to 20 micrometers.
Urine samples were passed through fiber-packed tubes by spinning them in a centrifuge for 30 seconds. Following centrifugation de-ionized water was run through the tubes for one minute to wash off salt and other contaminants. Hydrophobic proteins, which remained bound to the fibers, were extracted for MALDI-MS analysis with appropriate solvents during a 30 second centrifugation step.
Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique used in mass spectrometry, allowing the analysis of biomolecules (biopolymers such as DNA, proteins, peptides, and sugars) and large organic molecules (such as polymers, dendrimers, and other macromolecules), which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI produces far fewer multiply charged ions.
The C-CP fiber method was validated by measuring the urinary proteins beta-2-microglobulin, retinol binding protein, and transferrin. C-CP fiber tips offered several advantages including low materials costs, high throughput, microvolume processing, and the determination of sub-nanogram quantities of analyte; allowing determination of biomarkers that are otherwise undetectable in urine samples.
"You have got almost seawater coming out of you, and I am trying to find something far smaller than a needle in a haystack," said senior author Dr. Ken Marcus, professor of analytical chemistry at Clemson University. "The concentrations of these proteins would be one part in a billion."
The C-CP fiber method for urine sample purification was described in the March 18, 2015, online edition of the journal Proteomics-Clinical Applications.
Related Links:
Clemson University
While mass spectrometry is a powerful tool for biomarker determinations, the high salt content and the matrix of small molecules present in urine has reduced its applicability for urinary diagnosis. To correct this deficiency, investigators at Clemson University (SC, USA) packed micropipette tips with C-CP fibers. These fibers possess a unique geometry that includes eight channels that extend the entire fiber length (which can be miles on a spool). The fibers are nominally an oblong shape with diameters ranging from 35 to 50 micrometers, with the individual channels ranging in size from five to 20 micrometers.
Urine samples were passed through fiber-packed tubes by spinning them in a centrifuge for 30 seconds. Following centrifugation de-ionized water was run through the tubes for one minute to wash off salt and other contaminants. Hydrophobic proteins, which remained bound to the fibers, were extracted for MALDI-MS analysis with appropriate solvents during a 30 second centrifugation step.
Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization technique used in mass spectrometry, allowing the analysis of biomolecules (biopolymers such as DNA, proteins, peptides, and sugars) and large organic molecules (such as polymers, dendrimers, and other macromolecules), which tend to be fragile and fragment when ionized by more conventional ionization methods. It is similar in character to electrospray ionization (ESI) in that both techniques are relatively soft ways of obtaining ions of large molecules in the gas phase, though MALDI produces far fewer multiply charged ions.
The C-CP fiber method was validated by measuring the urinary proteins beta-2-microglobulin, retinol binding protein, and transferrin. C-CP fiber tips offered several advantages including low materials costs, high throughput, microvolume processing, and the determination of sub-nanogram quantities of analyte; allowing determination of biomarkers that are otherwise undetectable in urine samples.
"You have got almost seawater coming out of you, and I am trying to find something far smaller than a needle in a haystack," said senior author Dr. Ken Marcus, professor of analytical chemistry at Clemson University. "The concentrations of these proteins would be one part in a billion."
The C-CP fiber method for urine sample purification was described in the March 18, 2015, online edition of the journal Proteomics-Clinical Applications.
Related Links:
Clemson University
Latest Clinical Chem. News
- VOCs Show Promise for Early Multi-Cancer Detection
- Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
- Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
- Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
- Simple Non-Invasive Hair-Based Test Could Speed ALS Diagnosis
- Paper Strip Saliva Test Detects Elevated Uric Acid Levels Without Blood Draws
- Prostate Cancer Markers Based on Chemical Make-Up of Calcifications to Speed Up Detection
- Breath Test Could Help Detect Blood Cancers
- ML-Powered Gas Sensors to Detect Pathogens and AMR at POC
- Saliva-Based Cancer Detection Technology Eliminates Need for Complex Sample Preparation
- Skin Swabs Could Detect Parkinson’s Years Before Symptoms Appear
- New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs

- New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
- Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
- Simple Urine Test Could Detect Multiple Cancers at Early Stage
- Earwax Test Accurately Detects Parkinson’s by Identifying Odor Molecules
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
Accurately identifying individuals at high risk of heart attack remains a major challenge, especially when traditional indicators like cholesterol and blood pressure appear normal. Elevated levels of three... Read more
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








