Pathologists Use Spatial Light Interference Microscopy to Predict Risk of Prostate Cancer Recurrence Prior to Biopsy or Surgery
By LabMedica International staff writers Posted on 24 May 2015 |

Image: Left: Quantitative phase image of an unstained prostatectomy sample from a patient who had a biochemical recurrence of prostate cancer. Right: A zoomed-in region from the quantitative phase image showing a cancerous gland with debris in the lumen. The stroma, or supportive tissue environment, shows discontinuities in the fiber length and disorganization in the orientation of the fibers (Photo courtesy of the University of Illinois).
A novel microscopy method that combines phase contrast microscopy with holography enables prediction of the likelihood of prostate cancer recurrence prior to biopsy or surgery.
The method is called spatial light interference microscopy or SLIM. SLIM uses a commercial phase contrast microscope and white light illumination, resulting in nanometer scale sensitivity to optical path-length shifts. In essence, SLIM combines phase contrast microscopy with holography.
Investigators at the University of Illinois (Urbana, USA) have introduced a new instrument for SLIM imaging. Their real-time fast SLIM technique could image at a maximum rate of 50 frames per second and provided real-time quantitative phase images at 12.5 frames per second. They were able to achieve this fast rate by combining rapid LCPM (linear pulse-code modulation) and a fast sCMOS camera. In addition, they developed the software to perform phase reconstruction and display the quantitative phase images in real-time.
In the current study, the investigators used the SLIM technique to examine 181 tissue samples obtained from the [US] National Cancer Institute-sponsored Cooperative Prostate Tissue Resource (CPCTR), The specimens were taken from individuals who had a prostatectomy, approximately half who had no recurrence and half who did.
The instrument was programmed to scan microscope slides containing 320–360 individual cores. The resulting SLIM image contained rich information about tissue morphology, with the glandular epithelium and stroma structures clearly resolved. This allowed the investigators to interrogate scattering changes specific to prostate stroma.
Results suggested that SLIM showed promise in assisting pathologists to improve prediction of prostate cancer recurrence. The data revealed that a lower value of anisotropy corresponded to a higher risk for recurrence, meaning that the stroma adjoining the glands of recurrent patients was more fractionated than in non-recurrent patients. Anisotropy is the property of being directionally dependent, as opposed to isotropy, which implies identical properties in all directions. It can be defined as a difference, when measured along different axes, in a material's physical or mechanical properties.
"For every 20 surgery procedures to take out the prostate, it is estimated that only one life is saved," said senior author Dr. Gabriel Popescu, associate professor of electrical and computer engineering at the University of Illinois. "For the other 19 people, they would be better left alone, because with removing the prostate, the quality of life goes down dramatically. So if you had a tool that could tell which patient will actually be more likely to have a bad outcome, then you could more aggressively treat that case."
"What SLIM is very good at is to make invisible objects visible with nanoscale sensitivity," said Dr. Popescu. "So we pick these structural details without the need for staining, which can introduce new variables into the specimen. Our dream is for everyone to have SLIM capabilities in their labs. One can imagine that a SLIM-based tissue imager will scan biopsies in a clinic and, paired with software that is intelligent enough to look for these specific markers, will provide the pathologist with valuable new information. This additional information will translate into more accurate diagnosis and prognosis."
The paper describing the use of SLIM to predict prostate cancer recurrence was published in the May 15, 2015, online edition of the journal Scientific Reports.
Related Links:
University of Illinois
The method is called spatial light interference microscopy or SLIM. SLIM uses a commercial phase contrast microscope and white light illumination, resulting in nanometer scale sensitivity to optical path-length shifts. In essence, SLIM combines phase contrast microscopy with holography.
Investigators at the University of Illinois (Urbana, USA) have introduced a new instrument for SLIM imaging. Their real-time fast SLIM technique could image at a maximum rate of 50 frames per second and provided real-time quantitative phase images at 12.5 frames per second. They were able to achieve this fast rate by combining rapid LCPM (linear pulse-code modulation) and a fast sCMOS camera. In addition, they developed the software to perform phase reconstruction and display the quantitative phase images in real-time.
In the current study, the investigators used the SLIM technique to examine 181 tissue samples obtained from the [US] National Cancer Institute-sponsored Cooperative Prostate Tissue Resource (CPCTR), The specimens were taken from individuals who had a prostatectomy, approximately half who had no recurrence and half who did.
The instrument was programmed to scan microscope slides containing 320–360 individual cores. The resulting SLIM image contained rich information about tissue morphology, with the glandular epithelium and stroma structures clearly resolved. This allowed the investigators to interrogate scattering changes specific to prostate stroma.
Results suggested that SLIM showed promise in assisting pathologists to improve prediction of prostate cancer recurrence. The data revealed that a lower value of anisotropy corresponded to a higher risk for recurrence, meaning that the stroma adjoining the glands of recurrent patients was more fractionated than in non-recurrent patients. Anisotropy is the property of being directionally dependent, as opposed to isotropy, which implies identical properties in all directions. It can be defined as a difference, when measured along different axes, in a material's physical or mechanical properties.
"For every 20 surgery procedures to take out the prostate, it is estimated that only one life is saved," said senior author Dr. Gabriel Popescu, associate professor of electrical and computer engineering at the University of Illinois. "For the other 19 people, they would be better left alone, because with removing the prostate, the quality of life goes down dramatically. So if you had a tool that could tell which patient will actually be more likely to have a bad outcome, then you could more aggressively treat that case."
"What SLIM is very good at is to make invisible objects visible with nanoscale sensitivity," said Dr. Popescu. "So we pick these structural details without the need for staining, which can introduce new variables into the specimen. Our dream is for everyone to have SLIM capabilities in their labs. One can imagine that a SLIM-based tissue imager will scan biopsies in a clinic and, paired with software that is intelligent enough to look for these specific markers, will provide the pathologist with valuable new information. This additional information will translate into more accurate diagnosis and prognosis."
The paper describing the use of SLIM to predict prostate cancer recurrence was published in the May 15, 2015, online edition of the journal Scientific Reports.
Related Links:
University of Illinois
Latest Pathology News
- Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
- Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
- Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
- Advances in Monkeypox Virus Diagnostics to Improve Management of Future Outbreaks
- Nanoneedle-Studded Patch Could Eliminate Painful and Invasive Biopsies
- AI Cancer Classification Tool to Drive Targeted Treatments
- AI-Powered Imaging Enables Faster Lung Disease Treatment
- New Laboratory Method Speeds Diagnosis of Rare Genetic Disease
- New Technology Autonomously Detects AI Hallucinations in Digital Pathology
- Novel Algorithm Rapidly Identifies Cell Types to Improve Cancer Diagnosis
- AI Method Speeds Up Cancer Tracking Using Blood Tests
- New AI Tool Improves Blood Cancer Diagnosis
- Novel Platform Technology Predicts Diseases by Early Detection of Aging Signals in Liver Tissue
- AI Model Detects More Than 170 Cancer Types
- Smartphone-Based Rapid Hemoglobin Test Accurately Detects Colorectal Cancer
- Visualization Tool Illuminates Breast Cancer Cell Migration to Suggest New Treatment Avenues
Channels
Clinical Chemistry
view channel
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read more
Pen-Like Tool Quickly and Non-Invasively Detects Opioids from Skin
Opioid drugs such as fentanyl, morphine, and oxycodone are the primary substances associated with overdose cases in the United States. Standard drug screening procedures typically involve collecting blood,... Read moreMolecular Diagnostics
view channel
New Blood Test for Leukemia Risk Detection Could Replace Bone Marrow Sampling
Myelodysplastic syndrome (MDS) is a condition typically associated with aging, where blood stem cells fail to develop into fully functional blood cells. Early and accurate diagnosis is vital, as MDS can... Read more
Blood Test Detects Preeclampsia Risk Months Before Symptoms Appear
Preeclampsia, a pregnancy-related complication characterized by elevated blood pressure and organ dysfunction, remains a major contributor to maternal and infant health issues globally. Existing screening... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read moreMicrobiology
view channel
Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
Current tuberculosis (TB) tests face major limitations when it comes to accurately diagnosing the infection in individuals living with HIV. HIV, a frequent co-infection with TB, complicates detection by... Read more
Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Critically ill patients in medical intensive care units (MICUs) often suffer from conditions such as acute respiratory distress syndrome (ARDS) or sepsis, which are linked to reduced diversity of gut microbiota... Read more
Portable Molecular POC System Rules Out UTIs in Just 35 Minutes
Urinary tract infections (UTIs) represent a massive burden on patients and healthcare systems. There are over 400 million UTI cases globally each year, of which around 90% are in women. Fast and accurate... Read more
POC Lateral Flow Test Detects Deadly Fungal Infection Faster Than Existing Techniques
Diagnosing mucormycosis—an aggressive and often deadly fungal infection—remains a major challenge due to the disease’s rapid progression and the lack of fast, accurate diagnostic tools. The problem became... Read moreTechnology
view channel
New POC Biosensing Technology Improves Detection of Molecular Biomarkers
Traditional diagnostic procedures in medicine typically involve sending a patient’s blood or tissue samples to clinical laboratories, where trained scientists perform testing and data interpretation.... Read more
Enhanced Lab Data Management and AI Critical to Labs of the Future, Finds Survey
Data plays a key role in the transformation of today’s digital laboratories, acting both as a key challenge and a catalyst for innovation, as revealed by a survey of over 150 scientists.... Read moreIndustry
view channel
AMP Releases Best Practice Recommendations to Guide Clinical Laboratories Offering HRD Testing
Homologous recombination deficiency (HRD) testing identifies tumors that are unable to effectively repair DNA damage through the homologous recombination repair pathway. This deficiency is often linked... Read more