Novel Diagnostic Test Developed for Sickle Cell Disease
|
By LabMedica International staff writers Posted on 08 Sep 2014 |

Image: Scientists have developed a simple new test for sickle cell disease that provides results in just 12 minutes and costs as little as USD 0.5 — far simpler, faster, and cheaper than current tests (Photo courtesy of Dr. A. Kumar and Harvard University).
Researchers have developed a simple, rapid, low-cost test for sickle cell disease (SCD) that could enable large-scale global screening also of children in underprivileged regions, such as those in Africa and India.
A team led by Harvard University (Cambridge, MA, USA) postdoctoral fellow Ashok Kumar, PhD, and Prof. George Whitesides have developed a low-cost, novel test for SCD that provides results in just 12 minutes. “The tests we have today work great, they have a very high sensitivity,” said Dr. Kumar, “But the equipment needed to run them costs in the tens of thousands of dollars, and they take hours to run. That’s not amenable to rural clinics, or even some cities, where the medical infrastructure isn’t up to the standards we see in the US.” Although extensive analysis will be needed to determine whether the test is accurate enough to use in the field, when run against over 50 known clinical samples — 26 positive and 26 negative — it showed good sensitivity and specificity.
A chance meeting with Dr. Thomas Stossel, MD at Harvard-affiliated Brigham and Women’s Hospital had steered Dr. Kumar into focusing on SCD. “Initially, we started off working on malaria, because we thought when parasites invaded the cells, it would change their density,” he said, “But when I met Tom Stossel on a panel at the Harvard Medical School, he said, ‘You need to work on sickle cell.’ He’s a hematologist by training and has been working with a nonprofit in Zambia for the past decade, so he’s seen the need from the lack of a diagnostic tool.”
The method design is simple and works by connecting two long-understood principles. First, sickle cell red blood cells (RBCs) are denser than normal RBCs; second, many polymers, when mixed in water, automatically separate into layers ordered by density. Conventional methods to separate cells by density have relied on layering liquids with different density by hand. The new insight was to use the self-forming density layers. “When you mix the polymers with water, they separate just like oil and water,” said Dr. Kumar, “Even if you mix it up, it will still come back to those layers.” When the test was run with infected blood, the results were unmistakable. While healthy RBCs settled in the tubes at specific levels, the dense RBCs from blood infected with sickle cell settled significantly lower. The band of RBCs could clearly be seen by eye.
Next, “We wanted to make the test as simple as possible,” Dr. Kumar explained, “The idea was to make it something you could run from just a finger prick. Because these gradients assemble on their own, that meant we could make them in whatever volume we wanted, even a small capillary tube.” The design they chose is barely larger than a toothpick. In the field, running the test is as simple as uncapping the tube, pricking a patient’s finger, and allowing the blood to wick into the tube.
“There were studies recently that showed in sub-Saharan Africa between 50%-90% of the children born with sickle cell disease die before the age of 5,” said Dr. Kumar, “Whereas in the US people don’t die from this disease as children, they can still live a full life. So my hope is that if this test is effective, it can make [at least] some small dent in those numbers.”
The test is described in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS), September 2, 2014, online before print.
Related Links:
Harvard University
A team led by Harvard University (Cambridge, MA, USA) postdoctoral fellow Ashok Kumar, PhD, and Prof. George Whitesides have developed a low-cost, novel test for SCD that provides results in just 12 minutes. “The tests we have today work great, they have a very high sensitivity,” said Dr. Kumar, “But the equipment needed to run them costs in the tens of thousands of dollars, and they take hours to run. That’s not amenable to rural clinics, or even some cities, where the medical infrastructure isn’t up to the standards we see in the US.” Although extensive analysis will be needed to determine whether the test is accurate enough to use in the field, when run against over 50 known clinical samples — 26 positive and 26 negative — it showed good sensitivity and specificity.
A chance meeting with Dr. Thomas Stossel, MD at Harvard-affiliated Brigham and Women’s Hospital had steered Dr. Kumar into focusing on SCD. “Initially, we started off working on malaria, because we thought when parasites invaded the cells, it would change their density,” he said, “But when I met Tom Stossel on a panel at the Harvard Medical School, he said, ‘You need to work on sickle cell.’ He’s a hematologist by training and has been working with a nonprofit in Zambia for the past decade, so he’s seen the need from the lack of a diagnostic tool.”
The method design is simple and works by connecting two long-understood principles. First, sickle cell red blood cells (RBCs) are denser than normal RBCs; second, many polymers, when mixed in water, automatically separate into layers ordered by density. Conventional methods to separate cells by density have relied on layering liquids with different density by hand. The new insight was to use the self-forming density layers. “When you mix the polymers with water, they separate just like oil and water,” said Dr. Kumar, “Even if you mix it up, it will still come back to those layers.” When the test was run with infected blood, the results were unmistakable. While healthy RBCs settled in the tubes at specific levels, the dense RBCs from blood infected with sickle cell settled significantly lower. The band of RBCs could clearly be seen by eye.
Next, “We wanted to make the test as simple as possible,” Dr. Kumar explained, “The idea was to make it something you could run from just a finger prick. Because these gradients assemble on their own, that meant we could make them in whatever volume we wanted, even a small capillary tube.” The design they chose is barely larger than a toothpick. In the field, running the test is as simple as uncapping the tube, pricking a patient’s finger, and allowing the blood to wick into the tube.
“There were studies recently that showed in sub-Saharan Africa between 50%-90% of the children born with sickle cell disease die before the age of 5,” said Dr. Kumar, “Whereas in the US people don’t die from this disease as children, they can still live a full life. So my hope is that if this test is effective, it can make [at least] some small dent in those numbers.”
The test is described in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS), September 2, 2014, online before print.
Related Links:
Harvard University
Latest Hematology News
- ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
- Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
- Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
- Platelets Could Improve Early and Minimally Invasive Detection of Cancer
- Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
- Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
- First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes

- New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
- Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
- WBC Count Could Predict Severity of COVID-19 Symptoms
- New Platelet Counting Technology to Help Labs Prevent Diagnosis Errors
- Streamlined Approach to Testing for Heparin-Induced Thrombocytopenia Improves Diagnostic Accuracy
- POC Hemostasis System Could Help Prevent Maternal Deaths
- New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape
- Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals
- Non-Invasive Test Solution Determines Fetal RhD Status from Maternal Plasma
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Diagnostic Method Detects Pneumonia at POC in Low-Resource Settings
Pneumonia continues to be one of the leading causes of death in low- and middle-income countries, where limited access to advanced laboratory infrastructure hampers early and accurate diagnosis.... Read more
Blood Immune Cell Analysis Detects Parkinson’s Before Symptoms Appear
Early diagnosis of Parkinson’s disease remains one of the greatest challenges in neurology. The condition, which affects nearly 12 million people globally, is typically identified only after significant... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








