New Technology Developed to Diagnose Cancer Cells
|
By LabMedica International staff writers Posted on 04 Aug 2014 |

Image: Microscopic analysis system automatically acquires up to eight slides with immunohistochemically stained sections and performs quantitative analysis of staining intensities (Photo courtesy of TissueGnostics).
Patient tumors can be analyzed for aberrant activations of core cancer pathways by monitoring based on biomarker expression which ensures efficient treatment in targeted therapy.
Standard evaluation of cancer specimen by immunohistochemistry is frequently impeded by its dependence on subjective interpretation, showing considerable intra- and inter-observer variability and the certainty of the diagnosis depends greatly on the individual pathologist.
Scientists at the Medical University of Vienna (Austria) working with their colleagues from other institutes, used both human liver specimens and a mouse model to test quantitative image analysis tools. They used immunohistochemistry to identify deletion of the transcription factors Signal Transducer and Activator of Transcription 5 (Stat5ab) in the liver as well Transcription factor jun-B (Junb) deletion in a T-cell lymphoma model. They quantified the expression of total or activated STAT5AB or JUNB protein by Western Blots and detection was accomplished using an electrochemiluminescence detection system (Amersham Biotech; Amersham, UK).
The technology-platform of TissueGnostics GmbH (Vienna, Austria) provides tools to quantify protein expression levels on immunohistochemically stained tissue slides or cell preparations using the company’s proprietary HistoQuest. The software programs are based on single cell detection by identification of nuclear structures. The software uses certain algorithms and highly sensitive digital photography, enabling it to represent the matrix of cells and the cell nucleus better than under the microscope. STAT5 plays an important role in the development of leukemia and liver cancer. The JUNB gene is involved in the development of tumors in lymph gland tissue.
Nuclear signals were distinguished from cytoplasmic expression and translocation of the transcription factors from the cytoplasm to the nucleus and were reliably detected and quantified using image analysis. The investigators demonstrated that image analysis supported pathologists to score nuclear STAT5AB expression levels in immunohistologically stained human hepatocellular patient samples and decreased inter-observer variability. The scientists investigated and analyzed 30 liver cell carcinomas and were able to classify them into categories ranging from "negative" to "strongly positive" using the software.
Lukas Kenner MD, the senior author of the study, said, “The new program of course does not make pathologists redundant, however it is a supplementary method that considerably increases diagnostic certainty. Cancer therapies are expensive. This new software will also help us to assess more effectively where expensive therapy is justified, but also which cases do not need it, thereby also sparing the patient.” The study was published on July 11, 2014, in the journal Public Library of Science ONE.
Related Links:
Medical University of Vienna
Amersham Biotech
TissueGnostics
Standard evaluation of cancer specimen by immunohistochemistry is frequently impeded by its dependence on subjective interpretation, showing considerable intra- and inter-observer variability and the certainty of the diagnosis depends greatly on the individual pathologist.
Scientists at the Medical University of Vienna (Austria) working with their colleagues from other institutes, used both human liver specimens and a mouse model to test quantitative image analysis tools. They used immunohistochemistry to identify deletion of the transcription factors Signal Transducer and Activator of Transcription 5 (Stat5ab) in the liver as well Transcription factor jun-B (Junb) deletion in a T-cell lymphoma model. They quantified the expression of total or activated STAT5AB or JUNB protein by Western Blots and detection was accomplished using an electrochemiluminescence detection system (Amersham Biotech; Amersham, UK).
The technology-platform of TissueGnostics GmbH (Vienna, Austria) provides tools to quantify protein expression levels on immunohistochemically stained tissue slides or cell preparations using the company’s proprietary HistoQuest. The software programs are based on single cell detection by identification of nuclear structures. The software uses certain algorithms and highly sensitive digital photography, enabling it to represent the matrix of cells and the cell nucleus better than under the microscope. STAT5 plays an important role in the development of leukemia and liver cancer. The JUNB gene is involved in the development of tumors in lymph gland tissue.
Nuclear signals were distinguished from cytoplasmic expression and translocation of the transcription factors from the cytoplasm to the nucleus and were reliably detected and quantified using image analysis. The investigators demonstrated that image analysis supported pathologists to score nuclear STAT5AB expression levels in immunohistologically stained human hepatocellular patient samples and decreased inter-observer variability. The scientists investigated and analyzed 30 liver cell carcinomas and were able to classify them into categories ranging from "negative" to "strongly positive" using the software.
Lukas Kenner MD, the senior author of the study, said, “The new program of course does not make pathologists redundant, however it is a supplementary method that considerably increases diagnostic certainty. Cancer therapies are expensive. This new software will also help us to assess more effectively where expensive therapy is justified, but also which cases do not need it, thereby also sparing the patient.” The study was published on July 11, 2014, in the journal Public Library of Science ONE.
Related Links:
Medical University of Vienna
Amersham Biotech
TissueGnostics
Latest Pathology News
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read more
Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
Diagnosing amyotrophic lateral sclerosis (ALS) remains difficult even with advanced imaging and genetic tools, especially when clinicians must distinguish it from other neurodegenerative conditions that... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read moreTechnology
view channel
AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
Early diagnosis of ovarian cancer remains one of the toughest challenges in women’s health. Traditional tools such as the Risk of Ovarian Malignancy Algorithm (ROMA) can struggle to distinguish between... Read more
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








