New Technology Developed to Diagnose Cancer Cells
|
By LabMedica International staff writers Posted on 04 Aug 2014 |

Image: Microscopic analysis system automatically acquires up to eight slides with immunohistochemically stained sections and performs quantitative analysis of staining intensities (Photo courtesy of TissueGnostics).
Patient tumors can be analyzed for aberrant activations of core cancer pathways by monitoring based on biomarker expression which ensures efficient treatment in targeted therapy.
Standard evaluation of cancer specimen by immunohistochemistry is frequently impeded by its dependence on subjective interpretation, showing considerable intra- and inter-observer variability and the certainty of the diagnosis depends greatly on the individual pathologist.
Scientists at the Medical University of Vienna (Austria) working with their colleagues from other institutes, used both human liver specimens and a mouse model to test quantitative image analysis tools. They used immunohistochemistry to identify deletion of the transcription factors Signal Transducer and Activator of Transcription 5 (Stat5ab) in the liver as well Transcription factor jun-B (Junb) deletion in a T-cell lymphoma model. They quantified the expression of total or activated STAT5AB or JUNB protein by Western Blots and detection was accomplished using an electrochemiluminescence detection system (Amersham Biotech; Amersham, UK).
The technology-platform of TissueGnostics GmbH (Vienna, Austria) provides tools to quantify protein expression levels on immunohistochemically stained tissue slides or cell preparations using the company’s proprietary HistoQuest. The software programs are based on single cell detection by identification of nuclear structures. The software uses certain algorithms and highly sensitive digital photography, enabling it to represent the matrix of cells and the cell nucleus better than under the microscope. STAT5 plays an important role in the development of leukemia and liver cancer. The JUNB gene is involved in the development of tumors in lymph gland tissue.
Nuclear signals were distinguished from cytoplasmic expression and translocation of the transcription factors from the cytoplasm to the nucleus and were reliably detected and quantified using image analysis. The investigators demonstrated that image analysis supported pathologists to score nuclear STAT5AB expression levels in immunohistologically stained human hepatocellular patient samples and decreased inter-observer variability. The scientists investigated and analyzed 30 liver cell carcinomas and were able to classify them into categories ranging from "negative" to "strongly positive" using the software.
Lukas Kenner MD, the senior author of the study, said, “The new program of course does not make pathologists redundant, however it is a supplementary method that considerably increases diagnostic certainty. Cancer therapies are expensive. This new software will also help us to assess more effectively where expensive therapy is justified, but also which cases do not need it, thereby also sparing the patient.” The study was published on July 11, 2014, in the journal Public Library of Science ONE.
Related Links:
Medical University of Vienna
Amersham Biotech
TissueGnostics
Standard evaluation of cancer specimen by immunohistochemistry is frequently impeded by its dependence on subjective interpretation, showing considerable intra- and inter-observer variability and the certainty of the diagnosis depends greatly on the individual pathologist.
Scientists at the Medical University of Vienna (Austria) working with their colleagues from other institutes, used both human liver specimens and a mouse model to test quantitative image analysis tools. They used immunohistochemistry to identify deletion of the transcription factors Signal Transducer and Activator of Transcription 5 (Stat5ab) in the liver as well Transcription factor jun-B (Junb) deletion in a T-cell lymphoma model. They quantified the expression of total or activated STAT5AB or JUNB protein by Western Blots and detection was accomplished using an electrochemiluminescence detection system (Amersham Biotech; Amersham, UK).
The technology-platform of TissueGnostics GmbH (Vienna, Austria) provides tools to quantify protein expression levels on immunohistochemically stained tissue slides or cell preparations using the company’s proprietary HistoQuest. The software programs are based on single cell detection by identification of nuclear structures. The software uses certain algorithms and highly sensitive digital photography, enabling it to represent the matrix of cells and the cell nucleus better than under the microscope. STAT5 plays an important role in the development of leukemia and liver cancer. The JUNB gene is involved in the development of tumors in lymph gland tissue.
Nuclear signals were distinguished from cytoplasmic expression and translocation of the transcription factors from the cytoplasm to the nucleus and were reliably detected and quantified using image analysis. The investigators demonstrated that image analysis supported pathologists to score nuclear STAT5AB expression levels in immunohistologically stained human hepatocellular patient samples and decreased inter-observer variability. The scientists investigated and analyzed 30 liver cell carcinomas and were able to classify them into categories ranging from "negative" to "strongly positive" using the software.
Lukas Kenner MD, the senior author of the study, said, “The new program of course does not make pathologists redundant, however it is a supplementary method that considerably increases diagnostic certainty. Cancer therapies are expensive. This new software will also help us to assess more effectively where expensive therapy is justified, but also which cases do not need it, thereby also sparing the patient.” The study was published on July 11, 2014, in the journal Public Library of Science ONE.
Related Links:
Medical University of Vienna
Amersham Biotech
TissueGnostics
Latest Pathology News
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Blood Test Could Assess Concussion Severity in Teenagers with TBI
Diagnosing and monitoring concussion in adolescents is challenging because symptoms can persist for weeks and vary widely between patients. The need for objective tools is especially urgent for teen girls,... Read more
Simultaneous Analysis of Three Biomarker Tests Detects Elevated Heart Disease Risk Earlier
Accurately identifying individuals at high risk of heart attack remains a major challenge, especially when traditional indicators like cholesterol and blood pressure appear normal. Elevated levels of three... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more




 assay.jpg)



