Gene Type Associated with Higher Risk of Celiac Disease
|
By LabMedica International staff writers Posted on 10 Jul 2014 |
Researcher have found that children born with 2 copies of a high-risk variant in a specific group of genes confers 26% chance of developing celiac disease autoimmunity (CDA), an early sign of celiac disease (CD), by age 5. They also found a higher celiac risk in Sweden than in the three other studied countries, even with the same genetic risk factors.
The Environmental Determinants of Diabetes in Youth consortium (TEDDY) is studying CD and type-1 diabetes because both are autoimmune diseases with some of the same genetic risk factors. CD (which stems from an immune reaction to gluten) occurs in just under 1% of the USA population, and is more common than type-1 diabetes. The celiac study followed 6,403 newborn children with either of two high-risk gene groups important for immune function—HLA-DR3-DQ2 or HLA-DR4-DQ8—to see who would develop CD or CDA. These genes are involved in presenting gluten to immune cells. Over five years, 291 developed CD, while another 786 developed CDA.
“By looking at the genes of the children who participated in TEDDY, we can now identify who among them is at highest risk for CD, and their parents and health care providers can monitor these children to detect the disease early,” said Beena Akolkar, PhD, project scientist for TEDDY at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK; primary funder of TEDDY) of the US National Institutes of Health (NIH; Bethesda, MD, USA).
Researchers found that youth with 2 copies of HLA-DR3-DQ2 had the highest likelihood of disease development by age 5. Of this group, 26% developed CDA by age 5 and 12% developed CD. In those with 1 copy of HLA-DR3-DQ2, the risks of CDA and CD by age 5 were 11% and 3%, respectively. About 90% of CD patients carry HLA-DR3-DQ2.
Based on earlier research, lower rates of CDA and CD were expected in the USA and Germany than in Sweden. Rates of CDA in Sweden were nearly double the USA rates. However, the researchers were surprised to discover that Sweden also had higher rates of CDA and CD than Finland. “We’ve long known that Sweden has a high incidence of CD, but we don’t yet know why. TEDDY’s unique structure of having the same protocol in several countries enables us to search for factors that trigger the disease,” said the paper’s senior author Daniel Agardh, MD, PhD, of Lund University in Sweden, “By studying similarities and differences between genes and environmental factors in these countries, we hope to pinpoint risk factors for the disease.” This study will include examining how diet affects bacteria in the gut and the immune system of children with differing genetic risks.
The primary goal of TEDDY is to find the causes of type-1 diabetes—why some children with high-risk genes for type-1 diabetes go on to develop the disease while others with the same genetic risk do not. “With research networks like TEDDY, NIH is actively seeking to understand how diseases like celiac and type-1 diabetes occur and, by using genetic screening and other tools, to develop a more personalized approach to disease prevention and treatment,” said NIDDK Director Griffin P. Rodgers, MD.
The study was reported by Liu E. et al. in the New England Journal of Medicine, July 3, 2014.
Related Links:
National Institutes of Health
The Environmental Determinants of Diabetes in Youth consortium (TEDDY)
Celiac disease
The Environmental Determinants of Diabetes in Youth consortium (TEDDY) is studying CD and type-1 diabetes because both are autoimmune diseases with some of the same genetic risk factors. CD (which stems from an immune reaction to gluten) occurs in just under 1% of the USA population, and is more common than type-1 diabetes. The celiac study followed 6,403 newborn children with either of two high-risk gene groups important for immune function—HLA-DR3-DQ2 or HLA-DR4-DQ8—to see who would develop CD or CDA. These genes are involved in presenting gluten to immune cells. Over five years, 291 developed CD, while another 786 developed CDA.
“By looking at the genes of the children who participated in TEDDY, we can now identify who among them is at highest risk for CD, and their parents and health care providers can monitor these children to detect the disease early,” said Beena Akolkar, PhD, project scientist for TEDDY at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK; primary funder of TEDDY) of the US National Institutes of Health (NIH; Bethesda, MD, USA).
Researchers found that youth with 2 copies of HLA-DR3-DQ2 had the highest likelihood of disease development by age 5. Of this group, 26% developed CDA by age 5 and 12% developed CD. In those with 1 copy of HLA-DR3-DQ2, the risks of CDA and CD by age 5 were 11% and 3%, respectively. About 90% of CD patients carry HLA-DR3-DQ2.
Based on earlier research, lower rates of CDA and CD were expected in the USA and Germany than in Sweden. Rates of CDA in Sweden were nearly double the USA rates. However, the researchers were surprised to discover that Sweden also had higher rates of CDA and CD than Finland. “We’ve long known that Sweden has a high incidence of CD, but we don’t yet know why. TEDDY’s unique structure of having the same protocol in several countries enables us to search for factors that trigger the disease,” said the paper’s senior author Daniel Agardh, MD, PhD, of Lund University in Sweden, “By studying similarities and differences between genes and environmental factors in these countries, we hope to pinpoint risk factors for the disease.” This study will include examining how diet affects bacteria in the gut and the immune system of children with differing genetic risks.
The primary goal of TEDDY is to find the causes of type-1 diabetes—why some children with high-risk genes for type-1 diabetes go on to develop the disease while others with the same genetic risk do not. “With research networks like TEDDY, NIH is actively seeking to understand how diseases like celiac and type-1 diabetes occur and, by using genetic screening and other tools, to develop a more personalized approach to disease prevention and treatment,” said NIDDK Director Griffin P. Rodgers, MD.
The study was reported by Liu E. et al. in the New England Journal of Medicine, July 3, 2014.
Related Links:
National Institutes of Health
The Environmental Determinants of Diabetes in Youth consortium (TEDDY)
Celiac disease
Latest Molecular Diagnostics News
- STI Molecular Test Delivers Rapid POC Results for Treatment Guidance
- Blood Biomarker Improves Early Brain Injury Prognosis After Cardiac Arrest
- Biomarkers Could Identify Patients at High Risk of Severe AKI After Major Surgery
- CLIA Test Identifies Head and Neck Cancer Recurrence from Post-Surgical Lymphatic Fluid
- New 15-Minute Hepatitis C Test Paves Way for Same-Day Treatment
- Ovarian Cancer Assay Outperforms Traditional Tests in Early Detection
- Ultrasensitive Method Detects Low-Frequency Cancer Mutations
- Blood Test Enables Non-Invasive Endometriosis Detection
- New Blood Biomarkers Help Diagnose Pregnancy-Linked Liver Complication
- Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
- Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
- Genetic Marker to Help Children with T-Cell Leukemia Avoid Unnecessary Chemotherapy
- Four-Gene Blood Test Rules Out Bacterial Lung Infection
- New PCR Test Improves Diagnostic Accuracy of Bacterial Vaginosis and Candida Vaginitis
- New Serum Marker-Editing Strategy to Improve Diagnosis of Neurological Diseases
- World’s First Genetic Type 1 Diabetes Risk Test Enables Early Detection
Channels
Clinical Chemistry
view channel
POC Breath Diagnostic System to Detect Pneumonia-Causing Pathogens
Pseudomonas aeruginosa is a major cause of hospital-acquired and ventilator-associated pneumonia, particularly in lung transplant recipients and patients with structural lung disease. Its ability to form... Read more
Online Tool Detects Drug Exposure Directly from Patient Samples
Doctors often rely on patient interviews and medical records to determine what medications a person has taken, but this information is frequently incomplete. People may forget drugs they used, take over-the-counter... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channelBlood Test Could Detect Adverse Immunotherapy Effects
Immune checkpoint inhibitors have transformed cancer treatment, but they can also trigger serious immune-related adverse events that damage healthy organs and may become life-threatening if not detected early.... Read more
Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
CAR T-cell therapy has transformed treatment for patients with relapsed or treatment-resistant non-Hodgkin lymphoma, but many patients eventually relapse despite an initial response. Clinicians currently... Read moreMicrobiology
view channel
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read more
Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
Lower-respiratory tract infections (LRTIs) are a leading cause of illness and death worldwide, and pneumonia is the leading infectious cause of death in children under five, claiming the lives of over... Read morePathology
view channel
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read more
Common Health Issues Can Influence New Blood Tests for Alzheimer’s Disease
Blood-based tests for Alzheimer’s disease are transforming diagnosis by offering a simpler alternative to spinal taps and brain imaging. However, many people evaluated at memory clinics also live with... Read more
Blood Test Formula Identifies Chronic Liver Disease Patients with Higher Cancer Risk
Chronic liver disease affects millions worldwide and can progress silently to hepatocellular carcinoma (HCC), one of the deadliest cancers globally. While surveillance guidelines exist for patients with... Read moreTechnology
view channel
Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease that is notoriously difficult to diagnose in its early stages. Early symptoms often overlap with other neurological... Read more
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more








