LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Microfluidic Device Could Improve Biomarker Analyses

By LabMedica International staff writers
Posted on 08 Jul 2014
A new microfluidic device could offer a more reliable alternative for detecting biomarkers in patients facing such illnesses as cancer or malaria.

The physical attributes of cells are important biomarkers in medicine, whether extracting circulating tumor cells from the blood of a cancer patient, or to measure the elasticity of red blood cells due to malaria infection.

Image: Visualization from a numerical simulation of a cell flowing past the obstacle through the microfluidic device (Image courtesy of KTH – The Royal Institute of Technology).
Image: Visualization from a numerical simulation of a cell flowing past the obstacle through the microfluidic device (Image courtesy of KTH – The Royal Institute of Technology).

Scientists at The Royal Institute of Technology (KTH; Stockholm, Sweden) proposed a microfluidic device that can sort elastic capsules by their deformability. The device consists of a duct embedded with a semi-cylindrical obstacle, and a diffuser which further enhances the sorting capability. The KTH team used extensive computational simulations to model a microfluidic device that would sort cells according to their elasticity. The work draws on numerical techniques and computational capabilities developed in the last decade to handle the complexity of microscale flows.

Most cell sorting techniques rely on the difference between chemical properties of the cells. The problem is chemical properties do not give pathologists the full picture. Two cells can have very similar chemical properties, but different physical properties. Size, shape and elasticity, or deformability, are important attributes that can be also enable cell sorting, given the right kind of device.

The scientists demonstrated that the device can operate reasonably well under changes in the initial position of the capsule. The efficiency of the device remains essentially unaltered under small changes of the obstacle shape from semicircular to semi-elliptic cross-section. Confinement along the direction perpendicular to the plane of the device increases its efficiency. This work is the first numerical study of cell sorting by a realistic microfluidic device.

Dhrubaditya Mitra, PhD, an assistant professor in theoretical physics and a coauthor of the study offers an example of why elasticity matters. “If you are infected with malaria, the physical nature of your red blood cells changes. They become harder and red blood cells also become harder as they get older too. These harder red blood cells are filtered by the spleen which acts like a sieve. The softer red blood cells can squeeze through the gaps but the harder ones cannot.” The study was published on June 20, 2014, in the journal Soft Matter.

Related Links:

The Royal Institute of Technology



Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gold Member
Serological Pipets
INTEGRA Serological Pipets
New
Automatic Hematology Analyzer
LABAS F9000

Latest Technology News

New Miniature Device to Transform Testing of Blood Cancer Treatments
08 Jul 2014  |   Technology

Biosensing Advancement to Enable Early Detection of Disease Biomarkers at POC
08 Jul 2014  |   Technology

New POC Biosensing Technology Improves Detection of Molecular Biomarkers
08 Jul 2014  |   Technology



PURITAN MEDICAL