We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Medica 2024 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Rapid-Live Screening Microscopy Technique Enables Early Detection of Treatment-Resistant Cancer Cells

By LabMedica International staff writers
Posted on 27 Sep 2023

Chemotherapy serves as an effective tool in the fight against cancer, yet some cancer cells can evade treatment by going into a dormant state known as senescence. These so-called therapy-induced senescent (TIS) cells can become not just resistant to treatment but also potentially more harmful, even metastasizing. Early identification of TIS cells could be crucial in stopping their progression, but current detection techniques aren't quick or accurate enough. Now, new advanced microscopy techniques may offer a solution, allowing healthcare providers to identify these cells early on and adapt treatment plans accordingly.

A team of researchers at Johns Hopkins University (Baltimore, MD, USA) used a combination of three state-of-the-art, label-free microscopy methods—coherent Raman scattering, multi-photon absorption, and optical diffraction tomography—to examine TIS cells in their natural setting. This approach is unlike traditional methods and gave the scientists the ability to look at the cells' form, internal structure, and both physical and chemical properties during their entire life cycle.


Image: A new microscopy method detects treatment-resistant cancer cells early (Photo courtesy of 123RF)
Image: A new microscopy method detects treatment-resistant cancer cells early (Photo courtesy of 123RF)

The use of these advanced microscopy methods uncovered significant transformations within the TIS cells. For instance, within a day, the cells' mitochondria—the "energy factories" inside them—had repositioned themselves. By the 72-hour mark, the cells had started to excessively produce fatty molecules known as lipids and had become flatter and larger. This in-depth analysis helped the researchers establish a detailed timeline of these cellular changes. According to the team, their novel rapid-live screening microscopy methods offer great potential for advancing cancer research.

"Our work demonstrates the potential to transform anticancer treatment research," said Ishan Barman, an associate professor of mechanical engineering at Johns Hopkins Whiting School of Engineering. "Integrating these microscopy methods could help clinicians make more informed, timely treatment decisions."

Related Links:
Johns Hopkins University 


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thyroxine ELISA
T4 ELISA
New
Histamine ELISA
Histamine ELISA

Latest Pathology News

New Barcode Technology to Help Diagnose Cancer More Precisely

Mapping of Atherosclerotic Plaque Cells Predicts Future Risk of Stroke or Heart Attack

AI Analysis of Immune Cells Predicts Breast Cancer Prognosis