We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Molecular Diagnostic Platform Developed Using Gold Nanoparticles Shortens COVID-19 Diagnosis Time

By LabMedica International staff writers
Posted on 24 Jan 2022

Researchers have used gold nanoparticles to develop a new molecular diagnostic platform that considerably reduces the time required for COVID-19 detection.

The novel nanotechnology-based platform introduced by researchers at the Chung-Ang University (Seoul, South Korea) could also create a paradigm shift in the field of molecular diagnostics, revolutionizing how we detect infectious diseases and tackle future epidemics.


Illustration
Illustration

Early COVID-19 detection and isolation are key for controlling disease transmission and protecting vulnerable populations. The current standard for COVID-19 diagnosis is reverse transcriptase-polymerase chain reaction (RT-PCR), a technique in which viral genes are detected after they undergo multiples cycles of amplification. However, this technique is time-consuming, creating a testing backlog across diagnostic centers and leading to delayed diagnoses. The new nanotechnology-based platform can shorten the time required for COVID-19 diagnosis. Their surface-enhanced Raman scattering (SERS)-PCR detection platform - prepared using gold nanoparticles (AuNPs) in the cavities of Au 'nanodimple' substrates (AuNDSs) - can detect viral genes after only eight cycles of amplification. That is almost one-third of the number required with conventional RT-PCR.

The team had earlier developed a novel detection platform in which high-sensitivity SERS signals are produced by AuNPs uniformly arranged in the cavities of AuNDSs through a technique called DNA hybridization. Based on this previous discovery, the researchers developed the novel SERS-PCR platform for COVID-19 diagnosis. The newly developed SERS-PCR assay uses SERS signals to detect "bridge DNA" - small DNA probes that slowly break down in the presence of target viral genes. Therefore, in samples from patients positive for COVID-19, the concentration of bridge DNA (and therefore the SERS signal) continuously decreases with progressive PCR cycles. In contrast, when SARS-CoV-2 is absent, the SERS signal remains unchanged.

The team tested the effectiveness of their system using two representative target markers of SARS-CoV-2, namely, the envelope protein (E) and RNA-dependent RNA polymerase (RdRp) genes of SARS-CoV-2. While 25 cycles were required for RT-PCR-based detection, the AuNDS-based SERS-PCR platform required only eight cycles, considerably reducing the testing duration. Thus, SERS-PCR could be an important tool in the arsenal against the COVID-19 pandemic as well as revolutionize infectious diseases are detected and future epidemics are tackled.

"Conventional RT-PCR is based on the detection of fluorescence signals, so 3–4 hours are required to detect SARS-CoV-2. This speed is not enough considering how rapidly COVID-19 spreads. We wanted to find a way to cut this time at least by half," said Prof. Jaebum Choo, explaining the motivation behind the study. "Although our results are preliminary, they provide an important proof-of-concept for the validity of SERS-PCR as a diagnostic technique. Our AuNDS-based SERS-PCR technique is a promising new molecular diagnostic platform that can considerably shorten the time required for gene detection compared to conventional RT-PCR techniques. This model can be further expanded by incorporating an automatic sampler to develop a next-generation molecular diagnostic system."

Related Links:
Chung-Ang University 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Latest COVID-19 News

New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases

Long COVID Etiologies Found in Acute Infection Blood Samples

Novel Device Detects COVID-19 Antibodies in Five Minutes