We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Rapid Pathogen Capture Technology Could Accelerate Diagnosis of Bloodstream Infections and Sepsis

By LabMedica International staff writers
Posted on 05 Dec 2022
Print article
Image: The genetically engineered FcMBL protein can capture more than 100 different microbial species (Photo courtesy of Wyss Institute)
Image: The genetically engineered FcMBL protein can capture more than 100 different microbial species (Photo courtesy of Wyss Institute)

Bloodstream infections (BSIs) with various microbial pathogens can rapidly escalate to life-threatening sepsis when the body is overwhelmed by the multiplying invaders and shuts down its organs’ functions. To prevent BSIs from progressing to full-blown sepsis, the infection-causing bacterial or fungal species must be identified as fast as possible. Only then can optimal pathogen-tailored antibacterial or antifungal treatments be applied in time. The conventional method used in clinical laboratories to identify the causative pathogenic species is long and laborious, requiring two time-consuming culture steps that take at least 1 to 3 days to complete. Now,

Now, a collaborative team led by researchers from UCL Great Ormond Street Institute of Child Health (GOSH, London, UK), the Wyss Institute for Biologically Inspired Engineering at Harvard University (Boston, MA, USA) and BOA Biomedical (Cambridge, UK) has re-engineered the process of microbial pathogen identification in blood samples from pediatric sepsis patients using the Wyss Institute’s FcMBL broad-spectrum pathogen capture technology. The advance enables accurate pathogen detection with a combination of unprecedented sensitivity and speed, and could significantly improve clinical outcomes for pediatric and older patients with BSIs and sepsis. In the pathogen identification process currently performed in clinical settings, first, blood samples are added to bottles containing liquid media in which infectious microbes, if present, are amplified to a certain density. Then, the amplified microbes are grown on solid media as isolated colonies whose constituent cells eventually can be identified with a highly sensitive, yet fast and relatively inexpensive analytical method know as MALDI-TOF mass spectrometry (MS).

FcMBL is the key component of a broad-spectrum pathogen capture technology. It consists of a genetically engineered human immune protein called mannose-binding lectin (MBL) that is fused to the Fc fragment of an antibody molecule to produce the resulting FcMBL protein. In this configuration, the MBL portion of FcMBL can capture more than 100 different microbial species with high efficiency, including virtually all of the bacterial and fungal pathogens causing sepsis. FcMBL’s Fc portion can be used to couple it to magnetic beads, allowing the captured pathogens to be quickly pulled out of patient samples and liquid blood cultures.

In the earlier stages of the project, the Wyss team provided purified bead-coupled FcMBL to the GOSH team, which had access to blood samples from pediatric patients at the hospital. At later stages, the sepsis and infectious disease company BOA Biomedical, co-founded to commercialize the Wyss Institute’s FcMBL technology, provided the FcMBL reagent and critical expertise to the project. BOA Biomedical meanwhile developed the manufacturing capabilities for FcMBL that the Food and Drug Administration (FDA) in the US and other federal health agencies require for producing therapeutic and diagnostic products.

In addition to using the gold standard two-step blood culture in combination with MALDI-TOF MS pathogen identification, the team also included the Bruker Corporation’s (Billerica, MA USA) MBT Sepsityper kit as a comparison. Brought to market in 2021, the MBT Sepsityper essentially eliminates the time-consuming second microbial culture step by lysing microbial cells from the liquid culture and spinning the fragments down in a centrifuge before analyzing them by MALDI-TOF mass spectrometry analysis. Although it accelerates the overall diagnostic process, the MBT Sepsityper method produces lower microbial detection rates than those obtained with the conventional culture method, which means that it may still fail to identify the infection-causing pathogen in a significant fraction of blood samples.

“Sepsis is the leading killer in hospitals, and rapidly initiating the right antibiotic saves lives. Using work originally developed at the Wyss Institute, BOA Biomedical’s revolutionary FcMBL technology helps to quickly and accurately identify the pathogen causing sepsis, ushering in a new era of targeted antimicrobial therapy to help individual patients and curb society’s deadly antimicrobial resistance problem,” stated Mike McCurdy, M.D., Chief Medical Officer of BOA Biomedical.

“Our FcMBL approach has opened up the opportunity to identify pathogenic organisms to guide treatment 24 to 48 hours earlier than would be possible using standard culture techniques. It has also enabled us to use this identification to make any ongoing culture for antibiotic sensitivities more tailored to the needs of the patient. This method isn’t tied into a specific platform or manufacturer, and thus we see clear potential for it to become a new standard processing step for clinical pathogen detection,” said senior author Cloutman-Green, Ph.D., a Consultant Clinical Scientist and Infection Control Doctor at GOSH.

“By continuously adapting the powerful FcMBL pathogen capture technology to unmet and pressing diagnostic needs, such as the rapid diagnosis of sepsis in pediatric patients, we hope to profoundly alter the frequently dismal prospects of patients of all ages,” said Founding Director Donald Ingber, M.D., Ph.D. at Harvard’s Wyss Institute. “Our ultimate goal is to be able to accurately and even more rapidly identify pathogens directly in small samples of blood without the need for any additional microbial cultures.”

Related Links:
UCL GOSH
Wyss Institute
BOA Biomedical
Bruker Corporation

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The fastGEN BCR::ABL1 Cancer kit offers a way to personalize treatment strategies for leukemia (Photo courtesy of BioVendor MDx)

First of Its Kind NGS Assay for Precise Detection of BCR::ABL1 Fusion Gene to Enable Personalized Leukemia Treatment

The BCR::ABL1 fusion gene plays a key role in the pathogenesis of several blood cancers, particularly chronic myeloid leukemia (CML). This gene results from a chromosomal translocation that causes constitutive... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more